Categories
- Algorithms
- Active Learning
- Adaptive Data Analysis
- Adversarial Learning
- AutoML
- Bandit Algorithms
- Boosting and Ensemble Methods
- Classification
- Clustering
- Collaborative Filtering
- Components Analysis (e.g., CCA, ICA, LDA, PCA)
- Density Estimation
- Dynamical Systems
- Few-Shot Learning
- Kernel Methods
- Large Scale Learning
- Meta-Learning
- Metric Learning
- Missing Data
- Model Selection and Structure Learning
- Multitask and Transfer Learning
- Nonlinear Dimensionality Reduction and Manifold Learning
- Online Learning
- Ranking and Preference Learning
- Regression
- Relational Learning
- Representation Learning
- Semi-Supervised Learning
- Similarity and Distance Learning
- Sparse Coding and Dimensionality Expansion
- Sparsity and Compressed Sensing
- Spectral Methods
- Stochastic Methods
- Structured Prediction
- Uncertainty Estimation
- Unsupervised Learning
- Applications
- Activity and Event Recognition
- Audio and Speech Processing
- Body Pose, Face, and Gesture Analysis
- Communication- or Memory-Bounded Learning
- Computational Biology and Bioinformatics
- Computational Photography
- Computational Social Science
- Computer Vision
- Denoising
- Dialog- or Communication-Based Learning
- Fairness, Accountability, and Transparency
- Game Playing
- Hardware and Systems
- Health
- Image Segmentation
- Information Retrieval
- Matrix and Tensor Factorization
- Natural Language Processing
- Network Analysis
- Object Detection
- Object Recognition
- Privacy, Anonymity, and Security
- Program Understanding and Generation
- Quantitative Finance and Econometrics
- Recommender Systems
- Robotics
- Signal Processing
- Sustainability
- Time Series Analysis
- Tracking and Motion in Video
- Video Analysis
- Visual Question Answering
- Visual Scene Analysis and Interpretation
- Web Applications and Internet Data
- Data, Challenges, Implementations, and Software
- Deep Learning
- Adversarial Networks
- Attention Models
- Biologically Plausible Deep Networks
- CNN Architectures
- Deep Autoencoders
- Efficient Inference Methods
- Efficient Training Methods
- Embedding Approaches
- Generative Models
- Interaction-Based Deep Networks
- Memory-Augmented Neural Networks
- Optimization for Deep Networks
- Predictive Models
- Recurrent Networks
- Supervised Deep Networks
- Visualization or Exposition Techniques for Deep Networks
- Neuroscience and Cognitive Science
- Optimization
- Probabilistic Methods
- Reinforcement Learning and Planning
- Theory
Algorithms
Active Learning [Top]
Adaptive Data Analysis [Top]
A Meta-Analysis of Overfitting in Machine Learning | Rebecca Roelofs · Vaishaal Shankar · Benjamin Recht · Sara Fridovich-Keil · Moritz Hardt · John Miller · Ludwig Schmidt |
A Necessary and Sufficient Stability Notion for Adaptive Generalization | Moshe Shenfeld · Katrina Ligett |
Model Similarity Mitigates Test Set Overuse | Horia Mania · John Miller · Ludwig Schmidt · Moritz Hardt · Benjamin Recht |
Optimal Sampling and Clustering in the Stochastic Block Model | Se-Young Yun · Alexandre Proutiere |
Adversarial Learning [Top]
AutoML [Top]
D-VAE: A Variational Autoencoder for Directed Acyclic Graphs | Muhan Zhang · Shali Jiang · Zhicheng Cui · Roman Garnett · Yixin Chen |
DATA: Differentiable ArchiTecture Approximation | Jianlong Chang · xinbang zhang · Yiwen Guo · GAOFENG MENG · SHIMING XIANG · Chunhong Pan |
DetNAS: Backbone Search for Object Detection | Yukang Chen · Tong Yang · Xiangyu Zhang · GAOFENG MENG · Xinyu Xiao · Jian Sun |
Discovering Neural Wirings | Mitchell Wortsman · Ali Farhadi · Mohammad Rastegari |
Fast AutoAugment | Sungbin Lim · Ildoo Kim · Taesup Kim · Chiheon Kim · Sungwoong Kim |
Meta-Surrogate Benchmarking for Hyperparameter Optimization | Aaron Klein · Zhenwen Dai · Frank Hutter · Neil Lawrence · Javier Gonzalez |
NAT: Neural Architecture Transformer for Accurate and Compact Architectures | Yong Guo · Yin Zheng · Mingkui Tan · Qi Chen · Jian Chen · Peilin Zhao · Junzhou Huang |
Network Pruning via Transformable Architecture Search | Xuanyi Dong · Yi Yang |
Scalable Global Optimization via Local Bayesian Optimization | David Eriksson · Michael Pearce · Jacob Gardner · Ryan Turner · Matthias Poloczek |
XNAS: Neural Architecture Search with Expert Advice | Niv Nayman · Asaf Noy · Tal Ridnik · Itamar Friedman · Rong Jin · Lihi Zelnik |
Efficient Forward Architecture Search | Hanzhang Hu · John Langford · Rich Caruana · Saurajit Mukherjee · Eric Horvitz · Debadeepta Dey |
Efficient Neural Architecture Transformation Search in Channel-Level for Object Detection | Junran Peng · Ming Sun · ZHAO-XIANG ZHANG · Tieniu Tan · Junjie Yan |
Hyperparameter Learning via Distributional Transfer | Ho Chung Law · Peilin Zhao · Leung Sing Chan · Junzhou Huang · Dino Sejdinovic |
Learning search spaces for Bayesian optimization: Another view of hyperparameter transfer learning | Valerio Perrone · Huibin Shen · Matthias Seeger · Cedric Archambeau · Rodolphe Jenatton |
Meta Architecture Search | Albert Shaw · Wei Wei · Weiyang Liu · Le Song · Bo Dai |
Multi-objective Bayesian optimisation with preferences over objectives | Majid Abdolshah · Alistair Shilton · Santu Rana · Sunil Gupta · Svetha Venkatesh |
Practical Two-Step Lookahead Bayesian Optimization | Jian Wu · Peter Frazier |
Procrastinating with Confidence: Near-Optimal, Anytime, Adaptive Algorithm Configuration | Robert Kleinberg · Kevin Leyton-Brown · Brendan Lucier · Devon Graham |
Splitting Steepest Descent for Growing Neural Architectures | Lemeng Wu · Dilin Wang · Qiang Liu |
Towards modular and programmable architecture search | Renato Negrinho · Matthew Gormley · Geoffrey Gordon · Darshan Patil · Nghia Le · Daniel Ferreira |
Bandit Algorithms [Top]
Boosting and Ensemble Methods [Top]
A Debiased MDI Feature Importance Measure for Random Forests | Xiao Li · Yu Wang · Sumanta Basu · Karl Kumbier · Bin Yu |
A Refined Margin Distribution Analysis for Forest Representation Learning | Shen-Huan Lyu · Liang Yang · Zhi-Hua Zhou |
Faster Boosting with Smaller Memory | Julaiti Alafate · Yoav S Freund |
Margin-Based Generalization Lower Bounds for Boosted Classifiers | Allan Grønlund · Lior Kamma · Kasper Green Larsen · Alexander Mathiasen · Jelani Nelson |
Minimal Variance Sampling in Stochastic Gradient Boosting | Bulat Ibragimov · Gleb Gusev |
MonoForest framework for tree ensemble analysis | Igor Kuralenok · Vasilii Ershov · Igor Labutin |
Regularized Gradient Boosting | Corinna Cortes · Mehryar Mohri · Dmitry Storcheus |
Rethinking Generative Mode Coverage: A Pointwise Guaranteed Approach | Peilin Zhong · Yuchen Mo · Chang Xiao · Pengyu Chen · Changxi Zheng |
Classification [Top]
Classification-by-Components: Probabilistic Modeling of Reasoning over a Set of Components | Sascha Saralajew · Lars Holdijk · Maike Rees · Ebubekir Asan · Thomas Villmann |
Multilabel reductions: what is my loss optimising? | Aditya Menon · Ankit Singh Rawat · Sashank Reddi · Sanjiv Kumar |
Optimal Sparse Decision Trees | Xiyang Hu · Cynthia Rudin · Margo Seltzer |
Data Cleansing for Models Trained with SGD | Satoshi Hara · Atsushi Nitanda · Takanori Maehara |
L_DMI: A Novel Information-theoretic Loss Function for Training Deep Nets Robust to Label Noise | Yilun Xu · Peng Cao · Yuqing Kong · Yizhou Wang |
Copula Multi-label Learning | Weiwei Liu |
Optimizing Generalized Rate Metrics with Three Players | Harikrishna Narasimhan · Andrew Cotter · Maya Gupta |
Clustering [Top]
Collaborative Filtering [Top]
Markov Random Fields for Collaborative Filtering | Harald Steck |
Regularized Weighted Low Rank Approximation | Frank Ban · David Woodruff · Richard Zhang |
Components Analysis (e.g., CCA, ICA, LDA, PCA) [Top]
Density Estimation [Top]
Fisher Efficient Inference of Intractable Models | Song Liu · Takafumi Kanamori · Wittawat Jitkrittum · Yu Chen |
Learning Distributions Generated by One-Layer ReLU Networks | Shanshan Wu · Alexandros Dimakis · Sujay Sanghavi |
On Fenchel Mini-Max Learning | Chenyang Tao · Liqun Chen · Shuyang Dai · Junya Chen · Ke Bai · Dong Wang · Jianfeng Feng · Wenlian Lu · Georgiy Bobashev · Lawrence Carin |
Practical and Consistent Estimation of f-Divergences | Paul Rubenstein · Olivier Bousquet · Josip Djolonga · Carlos Riquelme · Ilya Tolstikhin |
Re-examination of the Role of Latent Variables in Sequence Modeling | Guokun Lai · Zihang Dai · Yiming Yang · Shinjae Yoo |
Space and Time Efficient Kernel Density Estimation in High Dimensions | Arturs Backurs · Piotr Indyk · Tal Wagner |
Unconstrained Monotonic Neural Networks | Antoine Wehenkel · Gilles Louppe |
Dynamical Systems [Top]
Mutually Regressive Point Processes | Ifigeneia Apostolopoulou · Scott Linderman · Kyle Miller · Artur Dubrawski |
Neural Networks with Cheap Differential Operators | Tian Qi Chen · David Duvenaud |
Few-Shot Learning [Top]
Adaptive Cross-Modal Few-shot Learning | Chen Xing · Negar Rostamzadeh · Boris Oreshkin · Pedro O. Pinheiro |
Cross Attention Network for Few-shot Classification | Ruibing Hou · Hong Chang · Bingpeng MA · Shiguang Shan · Xilin Chen |
Incremental Few-Shot Learning with Attention Attractor Networks | Mengye Ren · Renjie Liao · Ethan Fetaya · Richard Zemel |
Learning to Self-Train for Semi-Supervised Few-Shot Classification | Xinzhe Li · Qianru Sun · Yaoyao Liu · Qin Zhou · Shibao Zheng · Tat-Seng Chua · Bernt Schiele |
Meta-Reinforced Synthetic Data for One-Shot Fine-Grained Visual Recognition | Satoshi Tsutsui · Yanwei Fu · David Crandall |
Transductive Zero-Shot Learning with Visual Structure Constraint | Ziyu Wan · Dongdong Chen · Yan Li · Xingguang Yan · Junge Zhang · Yizhou Yu · Jing Liao |
Unsupervised Meta-Learning for Few-Shot Image Classification | Siavash Khodadadeh · Ladislau Boloni · Mubarak Shah |
Zero-shot Learning via Simultaneous Generating and Learning | Hyeonwoo Yu · Beomhee Lee |
Kernel Methods [Top]
Large Scale Learning [Top]
Meta-Learning [Top]
Adaptive Gradient-Based Meta-Learning Methods | Mikhail Khodak · Maria-Florina Balcan · Ameet Talwalkar |
Guided Meta-Policy Search | Russell Mendonca · Abhishek Gupta · Rosen Kralev · Pieter Abbeel · Sergey Levine · Chelsea Finn |
Learning to Propagate for Graph Meta-Learning | LU LIU · Tianyi Zhou · Guodong Long · Jing Jiang · Chengqi Zhang |
Meta Learning with Relational Information for Short Sequences | Yujia Xie · Haoming Jiang · Feng Liu · Tuo Zhao · Hongyuan Zha |
Meta-Curvature | Eunbyung Park · Junier Oliva |
Meta-Learning Representations for Continual Learning | Khurram Javed · Martha White |
Meta-Learning with Implicit Gradients | Aravind Rajeswaran · Chelsea Finn · Sham Kakade · Sergey Levine |
Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting | Jun Shu · Qi Xie · Lixuan Yi · Qian Zhao · Sanping Zhou · Zongben Xu · Deyu Meng |
Self-Supervised Generalisation with Meta Auxiliary Learning | Shikun Liu · Andrew Davison · Edward Johns |
Efficient Meta Learning via Minibatch Proximal Update | Pan Zhou · Xiaotong Yuan · Huan Xu · Shuicheng Yan · Jiashi Feng |
Fast and Flexible Multi-Task Classification using Conditional Neural Adaptive Processes | James Requeima · Jonathan Gordon · John Bronskill · Sebastian Nowozin · Richard Turner |
Learning to Learn By Self-Critique | Antreas Antoniou · Amos Storkey |
MetaInit: Initializing learning by learning to initialize | Yann Dauphin · Samuel Schoenholz |
Metalearned Neural Memory | Tsendsuren Munkhdalai · Alessandro Sordoni · TONG WANG · Adam Trischler |
Multimodal Model-Agnostic Meta-Learning via Task-Aware Modulation | Risto Vuorio · Shao-Hua Sun · Hexiang Hu · Joseph Lim |
Neural Relational Inference with Fast Modular Meta-learning | Ferran Alet · Erica Weng · Tomás Lozano-Pérez · Leslie Kaelbling |
Online-Within-Online Meta-Learning | Giulia Denevi · Dimitris Stamos · Carlo Ciliberto · Massimiliano Pontil |
Learning to Optimize in Swarms | Yue Cao · Tianlong Chen · Zhangyang Wang · Yang Shen |
Unsupervised Curricula for Visual Meta-Reinforcement Learning | Allan Jabri · Kyle Hsu · Abhishek Gupta · Ben Eysenbach · Sergey Levine · Chelsea Finn |
Metric Learning [Top]
Curvilinear Distance Metric Learning | Shuo Chen · Lei Luo · Jian Yang · Chen Gong · Jun Li · Heng Huang |
Fast Low-rank Metric Learning for Large-scale and High-dimensional Data | Han Liu · Zhizhong Han · Yu-Shen Liu · Ming Gu |
Metric Learning for Adversarial Robustness | Chengzhi Mao · Ziyuan Zhong · Junfeng Yang · Carl Vondrick · Baishakhi Ray |
Missing Data [Top]
Missing Not at Random in Matrix Completion: The Effectiveness of Estimating Missingness Probabilities Under a Low Nuclear Norm Assumption | Wei Ma · George H Chen |
Model Selection and Structure Learning [Top]
An Adaptive Empirical Bayesian Method for Sparse Deep Learning | Wei Deng · Xiao Zhang · Faming Liang · Guang Lin |
AutoPrune: Automatic Network Pruning by Regularizing Auxiliary Parameters | XIA XIAO · Zigeng Wang · Sanguthevar Rajasekaran |
Constraint-based Causal Structure Learning with Consistent Separating Sets | Honghao Li · Vincent Cabeli · Nadir Sella · Herve Isambert |
Fast structure learning with modular regularization | Greg Ver Steeg · Hrayr Harutyunyan · Daniel Moyer · Aram Galstyan |
Generalized Block-Diagonal Structure Pursuit: Learning Soft Latent Task Assignment against Negative Transfer | Zhiyong Yang · Qianqian Xu · Yangbangyan Jiang · Xiaochun Cao · Qingming Huang |
Learning Erdos-Renyi Random Graphs via Edge Detecting Queries | Zihan Li · Matthias Fresacher · Jonathan Scarlett |
Fixing Implicit Derivatives: Trust-Region Based Learning of Continuous Energy Functions | Chris Russell · Matteo Toso · Neill Campbell |
Multitask and Transfer Learning [Top]
Nonlinear Dimensionality Reduction and Manifold Learning [Top]
Dimensionality reduction: theoretical perspective on practical measures | Yair Bartal · Nova Fandina · Ofer Neiman |
Learning nonlinear level sets for dimensionality reduction in function approximation | Guannan Zhang · Jiaxin Zhang · Jacob Hinkle |
No Pressure! Addressing the Problem of Local Minima in Manifold Learning Algorithms | Max Vladymyrov |
Selecting the independent coordinates of manifolds with large aspect ratios | Yu-Chia Chen · Marina Meila |
Subspace Detours: Building Transport Plans that are Optimal on Subspace Projections | Boris Muzellec · Marco Cuturi |
Unsupervised Co-Learning on G-Manifolds Across Irreducible Representations | Yifeng Fan · Tingran Gao · Zhizhen Jane Zhao |
Online Learning [Top]
Ranking and Preference Learning [Top]
Learning Mixtures of Plackett-Luce Models from Structured Partial Orders | Zhibing Zhao · Lirong Xia |
On Sample Complexity Upper and Lower Bounds for Exact Ranking from Noisy Comparisons | Wenbo Ren · Jia (Kevin) Liu · Ness Shroff |
Selecting Optimal Decisions via Distributionally Robust Nearest-Neighbor Regression | Ruidi Chen · Ioannis Paschalidis |
Regression [Top]
Iterative Least Trimmed Squares for Mixed Linear Regression | Yanyao Shen · Sujay Sanghavi |
Kalman Filter, Sensor Fusion, and Constrained Regression: Equivalences and Insights | Maria Jahja · David Farrow · Roni Rosenfeld · Ryan Tibshirani |
Multivariate Distributionally Robust Convex Regression under Absolute Error Loss | Jose Blanchet · Peter W Glynn · Jun Yan · Zhengqing Zhou |
Optimal Sketching for Kronecker Product Regression and Low Rank Approximation | Huaian Diao · Rajesh Jayaram · Zhao Song · Wen Sun · David Woodruff |
Fast and Accurate Least-Mean-Squares Solvers | Ibrahim Jubran · Alaa Maalouf · Dan Feldman |
Partitioning Structure Learning for Segmented Linear Regression Trees | Xiangyu Zheng · Song Xi Chen |
Sparse High-Dimensional Isotonic Regression | David Gamarnik · Julia Gaudio |
Total Least Squares Regression in Input Sparsity Time | Huaian Diao · Zhao Song · David Woodruff · Xin Yang |
Relational Learning [Top]
Representation Learning [Top]
Aligning Visual Regions and Textual Concepts for Semantic-Grounded Image Representations | Fenglin Liu · Yuanxin Liu · Xuancheng Ren · Xiaodong He · Xu Sun |
Augmented Neural ODEs | Emilien Dupont · Arnaud Doucet · Yee Whye Teh |
Beyond Vector Spaces: Compact Data Representation as Differentiable Weighted Graphs | Denis Mazur · Vage Egiazarian · Stanislav Morozov · Artem Babenko |
Exact Rate-Distortion in Autoencoders via Echo Noise | Rob Brekelmans · Daniel Moyer · Aram Galstyan · Greg Ver Steeg |
Information Competing Process for Learning Diversified Representations | Jie Hu · Rongrong Ji · ShengChuan Zhang · Xiaoshuai Sun · Qixiang Ye · Chia-Wen Lin · Qi Tian |
Learning low-dimensional state embeddings and metastable clusters from time series data | Yifan Sun · Yaqi Duan · Hao Gong · Mengdi Wang |
Learning Nonsymmetric Determinantal Point Processes | Mike Gartrell · Victor-Emmanuel Brunel · Elvis Dohmatob · Syrine Krichene |
Provably Powerful Graph Networks | Haggai Maron · Heli Ben-Hamu · Hadar Serviansky · Yaron Lipman |
Quaternion Knowledge Graph Embeddings | SHUAI ZHANG · Yi Tay · Lina Yao · Qi Liu |
Semi-supervisedly Co-embedding Attributed Networks | Zaiqiao Meng · Shangsong Liang · Jinyuan Fang · Teng Xiao |
Large Scale Adversarial Representation Learning | Jeff Donahue · Karen Simonyan |
Layer-Dependent Importance Sampling for Training Deep and Large Graph Convolutional Networks | Difan Zou · Ziniu Hu · Yewen Wang · Song Jiang · Yizhou Sun · Quanquan Gu |
Learning elementary structures for 3D shape generation and matching | Theo Deprelle · Thibault Groueix · Matthew Fisher · Vladimir Kim · Bryan Russell · Mathieu Aubry |
Learning from brains how to regularize machines | Zhe Li · Wieland Brendel · Edgar Walker · Erick Cobos · Taliah Muhammad · Jacob Reimer · Matthias Bethge · Fabian Sinz · Zachary Pitkow · Andreas Tolias |
Rethinking Kernel Methods for Node Representation Learning on Graphs | Yu Tian · Long Zhao · Xi Peng · Dimitris Metaxas |
Slice-based Learning: A Programming Model for Residual Learning in Critical Data Slices | Vincent Chen · Sen Wu · Alexander Ratner · Jen Weng · Christopher Ré |
Deep Supervised Summarization: Algorithm and Application to Learning Instructions | Chengguang Xu · Ehsan Elhamifar |
Unsupervised Emergence of Egocentric Spatial Structure from Sensorimotor Prediction | Alban Laflaquière · Michael Garcia Ortiz |
Unsupervised State Representation Learning in Atari | Ankesh Anand · Evan Racah · Sherjil Ozair · Yoshua Bengio · Marc-Alexandre Côté · R Devon Hjelm |
What the Vec? Towards Probabilistically Grounded Embeddings | Carl Allen · Ivana Balazevic · Timothy Hospedales |
Are Disentangled Representations Helpful for Abstract Visual Reasoning? | Sjoerd van Steenkiste · Francesco Locatello · Jürgen Schmidhuber · Olivier Bachem |
CPM-Nets: Cross Partial Multi-View Networks | Changqing Zhang · Zongbo Han · yajie cui · Huazhu Fu · Joey Tianyi Zhou · Qinghua Hu |
Cross-lingual Language Model Pretraining | Alexis CONNEAU · Guillaume Lample |
Graph Transformer Networks | Seongjun Yun · Minbyul Jeong · Raehyun Kim · Jaewoo Kang · Hyunwoo Kim |
Learning Representations by Maximizing Mutual Information Across Views | Philip Bachman · R Devon Hjelm · William Buchwalter |
Numerically Accurate Hyperbolic Embeddings Using Tiling-Based Models | Tao Yu · Christopher De Sa |
On the Fairness of Disentangled Representations | Francesco Locatello · Gabriele Abbati · Thomas Rainforth · Stefan Bauer · Bernhard Schölkopf · Olivier Bachem |
On the Transfer of Inductive Bias from Simulation to the Real World: a New Disentanglement Dataset | Muhammad Waleed Gondal · Manuel Wuthrich · Djordje Miladinovic · Francesco Locatello · Martin Breidt · Valentin Volchkov · Joel Akpo · Olivier Bachem · Bernhard Schölkopf · Stefan Bauer |
Stacked Capsule Autoencoders | Adam Kosiorek · Sara Sabour · Yee Whye Teh · Geoffrey E Hinton |
Understanding the Representation Power of Graph Neural Networks in Learning Graph Topology | Nima Dehmamy · Albert-Laszlo Barabasi · Rose Yu |
Wasserstein Dependency Measure for Representation Learning | Sherjil Ozair · Corey Lynch · Yoshua Bengio · Aaron van den Oord · Sergey Levine · Pierre Sermanet |
Semi-Supervised Learning [Top]
A Unified Framework for Data Poisoning Attack to Graph-based Semi-supervised Learning | Xuanqing Liu · Si Si · Jerry Zhu · Yang Li · Cho-Jui Hsieh |
Are Anchor Points Really Indispensable in Label-Noise Learning? | Xiaobo Xia · Tongliang Liu · Nannan Wang · Bo Han · Chen Gong · Gang Niu · Masashi Sugiyama |
Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks | Sitao Luan · Mingde Zhao · Xiao-Wen Chang · Doina Precup |
Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs | Pedro Mercado · Francesco Tudisco · Matthias Hein |
Graph Agreement Models for Semi-Supervised Learning | Otilia Stretcu · Krishnamurthy Viswanathan · Dana Movshovitz-Attias · Emmanouil Platanios · Sujith Ravi · Andrew Tomkins |
Graph-Based Semi-Supervised Learning with Non-ignorable Non-response | Fan Zhou · Tengfei Li · Haibo Zhou · Hongtu Zhu · Ye Jieping |
HyperGCN: A New Method For Training Graph Convolutional Networks on Hypergraphs | Naganand Yadati · Madhav Nimishakavi · Prateek Yadav · Vikram Nitin · Anand Louis · Partha Talukdar |
A Condition Number for Joint Optimization of Cycle-Consistent Networks | Leonidas J Guibas · Qixing Huang · Zhenxiao Liang |
MixMatch: A Holistic Approach to Semi-Supervised Learning | David Berthelot · Nicholas Carlini · Ian Goodfellow · Nicolas Papernot · Avital Oliver · Colin A Raffel |
Uncoupled Regression from Pairwise Comparison Data | Liyuan Xu · Junya Honda · Gang Niu · Masashi Sugiyama |
Unlabeled Data Improves Adversarial Robustness | Yair Carmon · Aditi Raghunathan · Ludwig Schmidt · John Duchi · Percy Liang |
Similarity and Distance Learning [Top]
A Direct tilde{O}(1/epsilon) Iteration Parallel Algorithm for Optimal Transport | Arun Jambulapati · Aaron Sidford · Kevin Tian |
Conditional Independence Testing using Generative Adversarial Networks | Alexis Bellot · Mihaela van der Schaar |
Generalized Sliced Wasserstein Distances | Soheil Kolouri · Kimia Nadjahi · Umut Simsekli · Roland Badeau · Gustavo Rohde |
Hyperspherical Prototype Networks | Pascal Mettes · Elise van der Pol · Cees Snoek |
Input Similarity from the Neural Network Perspective | Guillaume Charpiat · Nicolas Girard · Loris Felardos · Yuliya Tarabalka |
Landmark Ordinal Embedding | Nikhil Ghosh · Yuxin Chen · Yisong Yue |
Tree-Sliced Variants of Wasserstein Distances | Tam Le · Makoto Yamada · Kenji Fukumizu · Marco Cuturi |
Sparse Coding and Dimensionality Expansion [Top]
Learning step sizes for unfolded sparse coding | Pierre Ablin · Thomas Moreau · Mathurin Massias · Alexandre Gramfort |
Sparsity and Compressed Sensing [Top]
Spectral Methods [Top]
A Unifying Framework for Spectrum-Preserving Graph Sparsification and Coarsening | Gecia Bravo Hermsdorff · Lee Gunderson |
Learning Deterministic Weighted Automata with Queries and Counterexamples | Gail Weiss · Yoav Goldberg · Eran Yahav |
Revisiting the Bethe-Hessian: Improved Community Detection in Sparse Heterogeneous Graphs | Lorenzo Dall'Amico · Romain Couillet · Nicolas Tremblay |
Stochastic Methods [Top]
Efficient Convex Relaxations for Streaming PCA | Raman Arora · Teodor Vanislavov Marinov |
Thinning for Accelerating the Learning of Point Processes | Tianbo Li · Yiping Ke |
Understanding Sparse JL for Feature Hashing | Meena Jagadeesan |
Structured Prediction [Top]
Uncertainty Estimation [Top]
Accurate Layerwise Interpretable Competence Estimation | Vickram Rajendran · William LeVine |
Accurate Uncertainty Estimation and Decomposition in Ensemble Learning | Jeremiah Liu · John Paisley · Marianthi-Anna Kioumourtzoglou · Brent Coull |
Addressing Failure Detection by Learning Model Confidence | Charles Corbière · Nicolas THOME · Avner Bar-Hen · Matthieu Cord · Patrick Pérez |
Beyond temperature scaling: Obtaining well-calibrated multi-class probabilities with Dirichlet calibration | Meelis Kull · Miquel Perello Nieto · Markus Kängsepp · Telmo Silva Filho · Hao Song · Peter Flach |
Calibration tests in multi-class classification: A unifying framework | David Widmann · Fredrik Lindsten · Dave Zachariah |
Can you trust your model's uncertainty? Evaluating predictive uncertainty under dataset shift | Jasper Snoek · Yaniv Ovadia · Emily Fertig · Balaji Lakshminarayanan · Sebastian Nowozin · D. Sculley · Joshua Dillon · Jie Ren · Zachary Nado |
Computing Full Conformal Prediction Set with Approximate Homotopy | Eugene Ndiaye · Ichiro Takeuchi |
Conformalized Quantile Regression | Yaniv Romano · Evan Patterson · Emmanuel Candes |
Deep Gamblers: Learning to Abstain with Portfolio Theory | Ziyin Liu · Zhikang Wang · Paul Pu Liang · Russ Salakhutdinov · Louis-Philippe Morency · Masahito Ueda |
Likelihood Ratios for Out-of-Distribution Detection | Jie Ren · Peter J. Liu · Emily Fertig · Jasper Snoek · Ryan Poplin · Mark Depristo · Joshua Dillon · Balaji Lakshminarayanan |
Modeling Uncertainty by Learning a Hierarchy of Deep Neural Connections | Raanan Yehezkel Rohekar · Yaniv Gurwicz · Shami Nisimov · Gal Novik |
Modelling heterogeneous distributions with an Uncountable Mixture of Asymmetric Laplacians | Axel Brando · Jose A Rodriguez · Jordi Vitria · Alberto Rubio Muñoz |
On Mixup Training: Improved Calibration and Predictive Uncertainty for Deep Neural Networks | Sunil Thulasidasan · Gopinath Chennupati · Jeff Bilmes · Tanmoy Bhattacharya · Sarah Michalak |
Prediction of Spatial Point Processes: Regularized Method with Out-of-Sample Guarantees | Muhammad Osama · Dave Zachariah · Peter Stoica |
Reliable training and estimation of variance networks | Nicki Skafte · Martin Jørgensen · Søren Hauberg |
Reverse KL-Divergence Training of Prior Networks: Improved Uncertainty and Adversarial Robustness | Andrey Malinin · Mark Gales |
Single-Model Uncertainties for Deep Learning | Natasa Tagasovska · David Lopez-Paz |
The Functional Neural Process | Christos Louizos · Xiahan Shi · Klamer Schutte · Max Welling |
Uncertainty on Asynchronous Time Event Prediction | Marin Biloš · Bertrand Charpentier · Stephan Günnemann |
Verified Uncertainty Calibration | Ananya Kumar · Percy Liang · Tengyu Ma |
Unsupervised Learning [Top]
Applications
Activity and Event Recognition [Top]
More Is Less: Learning Efficient Video Representations by Big-Little Network and Depthwise Temporal Aggregation | Quanfu Fan · Chun-Fu (Richard) Chen · Hilde Kuehne · Marco Pistoia · David Cox |
Why Can't I Dance in the Mall? Learning to Mitigate Scene Bias in Action Recognition | Jinwoo Choi · Chen Gao · Joseph C. E. Messou · Jia-Bin Huang |
Semantic Conditioned Dynamic Modulation for Temporal Sentence Grounding in Videos | Yitian Yuan · Lin Ma · Jingwen Wang · Wei Liu · Wenwu Zhu |
U-Time: A Fully Convolutional Network for Time Series Segmentation Applied to Sleep Staging | Mathias Perslev · Michael Jensen · Sune Darkner · Poul Jørgen Jennum · Christian Igel |
Audio and Speech Processing [Top]
Blow: a single-scale hyperconditioned flow for non-parallel raw-audio voice conversion | Joan Serrà · Santiago Pascual · Carlos Segura Perales |
DeepWave: A Recurrent Neural-Network for Real-Time Acoustic Imaging | Matthieu SIMEONI · Sepand Kashani · Paul Hurley · Martin Vetterli |
FastSpeech: Fast, Robust and Controllable Text to Speech | Yi Ren · Yangjun Ruan · Xu Tan · Tao Qin · Sheng Zhao · Zhou Zhao · Tie-Yan Liu |
MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis | Kundan Kumar · Rithesh Kumar · Thibault de Boissiere · Lucas Gestin · Wei Zhen Teoh · Jose Sotelo · Alexandre de Brébisson · Yoshua Bengio · Aaron Courville |
Body Pose, Face, and Gesture Analysis [Top]
Deep Structured Prediction for Facial Landmark Detection | Lisha Chen · Hui Su · Qiang Ji |
Dual Variational Generation for Low Shot Heterogeneous Face Recognition | Chaoyou Fu · Xiang Wu · Yibo Hu · Huaibo Huang · Ran He |
Face Reconstruction from Voice using Generative Adversarial Networks | Yandong Wen · Bhiksha Raj · Rita Singh |
Learning Temporal Pose Estimation from Sparsely-Labeled Videos | Gedas Bertasius · Christoph Feichtenhofer · Du Tran · Jianbo Shi · Lorenzo Torresani |
Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition | Xuesong Niu · Hu Han · Shiguang Shan · Xilin Chen |
Sim2real transfer learning for 3D human pose estimation: motion to the rescue | Carl Doersch · Andrew Zisserman |
Communication- or Memory-Bounded Learning [Top]
Communication-efficient Distributed SGD with Sketching | Nikita Ivkin · Daniel Rothchild · Enayat Ullah · Vladimir braverman · Ion Stoica · Raman Arora |
Order Optimal One-Shot Distributed Learning | Arsalan Sharifnassab · Saber Salehkaleybar · S. Jamaloddin Golestani |
Computational Biology and Bioinformatics [Top]
Cormorant: Covariant Molecular Neural Networks | Brandon Anderson · Truong Son Hy · Risi Kondor |
Deep imitation learning for molecular inverse problems | Eric Jonas |
End-to-End Learning on 3D Protein Structure for Interface Prediction | Raphael Townshend · Rishi Bedi · Patricia Suriana · Ron Dror |
Evaluating Protein Transfer Learning with TAPE | Roshan Rao · Nicholas Bhattacharya · Neil Thomas · Yan Duan · Peter Chen · John Canny · Pieter Abbeel · Yun Song |
Generative Models for Graph-Based Protein Design | John Ingraham · Vikas Garg · Regina Barzilay · Tommi Jaakkola |
Recurrent Kernel Networks | Dexiong Chen · Laurent Jacob · Julien Mairal |
Computational Photography [Top]
Computational Mirrors: Blind Inverse Light Transport by Deep Matrix Factorization | Miika Aittala · Prafull Sharma · Lukas Murmann · Adam Yedidia · Gregory Wornell · Bill Freeman · Fredo Durand |
Reflection Separation using a Pair of Unpolarized and Polarized Images | Youwei Lyu · Zhaopeng Cui · Si Li · Marc Pollefeys · Boxin Shi |
Training Image Estimators without Image Ground Truth | Zhihao Xia · Ayan Chakrabarti |
Computational Social Science [Top]
Making the Cut: A Bandit-based Approach to Tiered Interviewing | Candice Schumann · Zhi Lang · Jeffrey Foster · John Dickerson |
On Human-Aligned Risk Minimization | Liu Leqi · Adarsh Prasad · Pradeep Ravikumar |
Computer Vision [Top]
Denoising [Top]
Extending Stein's unbiased risk estimator to train deep denoisers with correlated pairs of noisy images | Magauiya Zhussip · Shakarim Soltanayev · Se Young Chun |
Variational Denoising Network: Toward Blind Noise Modeling and Removal | Zongsheng Yue · Hongwei Yong · Qian Zhao · Deyu Meng · Lei Zhang |
Dialog- or Communication-Based Learning [Top]
Approximating Interactive Human Evaluation with Self-Play for Open-Domain Dialog Systems | Asma Ghandeharioun · Judy Hanwen Shen · Natasha Jaques · Craig Ferguson · Noah Jones · Agata Lapedriza · Rosalind Picard |
Fairness, Accountability, and Transparency [Top]
Assessing Disparate Impact of Personalized Interventions: Identifiability and Bounds | Nathan Kallus · Angela Zhou |
Assessing Social and Intersectional Biases in Contextualized Word Representations | Yi Chern Tan · L. Elisa Celis |
Balancing Efficiency and Fairness in On-Demand Ridesourcing | Nixie S Lesmana · Xuan Zhang · Xiaohui Bei |
Characterizing Bias in Classifiers using Generative Models | Daniel McDuff · Shuang Ma · Yale Song · Ashish Kapoor |
Demystifying Black-box Models with Symbolic Metamodels | Ahmed Alaa · Mihaela van der Schaar |
Envy-Free Classification | Maria-Florina Balcan · Travis Dick · Ritesh Noothigattu · Ariel Procaccia |
Fair Algorithms for Clustering | Suman Bera · Deeparnab Chakrabarty · Nicolas Flores · Maryam Negahbani |
Modeling Conceptual Understanding in Image Reference Games | Rodolfo Corona Rodriguez · Stephan Alaniz · Zeynep Akata |
Multi-Criteria Dimensionality Reduction with Applications to Fairness | Uthaipon Tantipongpipat · Samira Samadi · Mohit Singh · Jamie Morgenstern · Santosh Vempala |
Noise-tolerant fair classification | Alex Lamy · Ziyuan Zhong · Aditya Menon · Nakul Verma |
On the Accuracy of Influence Functions for Measuring Group Effects | Pang Wei Koh · Kai-Siang Ang · Hubert Teo · Percy Liang |
Paradoxes in Fair Machine Learning | Paul Goelz · Anson Kahng · Ariel Procaccia |
PC-Fairness: A Unified Framework for Measuring Causality-based Fairness | Yongkai Wu · Lu Zhang · Xintao Wu · Hanghang Tong |
This Looks Like That: Deep Learning for Interpretable Image Recognition | Chaofan Chen · Oscar Li · Daniel Tao · Alina Barnett · Cynthia Rudin · Jonathan K Su |
Towards Automatic Concept-based Explanations | Amirata Ghorbani · James Wexler · James Zou · Been Kim |
Ask not what AI can do, but what AI should do: Towards a framework of task delegability | Brian Lubars · Chenhao Tan |
Attribution-Based Confidence Metric For Deep Neural Networks | Susmit Jha · Sunny Raj · Steven Fernandes · Sumit K Jha · Somesh Jha · Brian Jalaian · Gunjan Verma · Ananthram Swami |
Average Individual Fairness: Algorithms, Generalization and Experiments | Saeed Sharifi-Malvajerdi · Michael Kearns · Aaron Roth |
Disentangling Influence: Using disentangled representations to audit model predictions | Charles Marx · Richard Phillips · Sorelle Friedler · Carlos Scheidegger · Suresh Venkatasubramanian |
Equal Opportunity in Online Classification with Partial Feedback | Yahav Bechavod · Katrina Ligett · Aaron Roth · Bo Waggoner · Steven Wu |
Exploring Algorithmic Fairness in Robust Graph Covering Problems | Aida Rahmattalabi · Phebe Vayanos · Anthony Fulginiti · Eric Rice · Bryan Wilder · Amulya Yadav · Milind Tambe |
Group Retention when Using Machine Learning in Sequential Decision Making: the Interplay between User Dynamics and Fairness | Xueru Zhang · Mohammadmahdi Khaliligarekani · Cem Tekin · mingyan liu |
Inherent Tradeoffs in Learning Fair Representations | Han Zhao · Geoff Gordon |
Leveraging Labeled and Unlabeled Data for Consistent Fair Binary Classification | Evgenii Chzhen · Christophe Denis · Mohamed Hebiri · Luca Oneto · Massimiliano Pontil |
Offline Contextual Bandits with High Probability Fairness Guarantees | Blossom Metevier · Stephen Giguere · Sarah Brockman · Ari Kobren · Yuriy Brun · Emma Brunskill · Philip Thomas |
On Relating Explanations and Adversarial Examples | Alexey Ignatiev · Nina Narodytska · Joao Marques-Silva |
On Testing for Biases in Peer Review | Ivan Stelmakh · Nihar Shah · Aarti Singh |
On the (In)fidelity and Sensitivity of Explanations | Chih-Kuan Yeh · Cheng-Yu Hsieh · Arun Suggala · David Inouye · Pradeep Ravikumar |
Policy Learning for Fairness in Ranking | Ashudeep Singh · Thorsten Joachims |
The Fairness of Risk Scores Beyond Classification: Bipartite Ranking and the XAUC Metric | Nathan Kallus · Angela Zhou |
Unlocking Fairness: a Trade-off Revisited | Michael Wick · swetasudha panda · Jean-Baptiste Tristan |
Game Playing [Top]
Game Design for Eliciting Distinguishable Behavior | Fan Yang · Liu Leqi · Yifan Wu · Zachary Lipton · Pradeep Ravikumar · Tom M Mitchell · William Cohen |
Hardware and Systems [Top]
A Zero-Positive Learning Approach for Diagnosing Software Performance Regressions | Mejbah Alam · Justin Gottschlich · Nesime Tatbul · Javier Turek · Tim Mattson · Abdullah Muzahid |
Coda: An End-to-End Neural Program Decompiler | Cheng Fu · Huili Chen · Haolan Liu · Xinyun Chen · Yuandong Tian · Farinaz Koushanfar · Jishen Zhao |
Learning Generalizable Device Placement Algorithms for Distributed Machine Learning | ravichandra addanki · Shaileshh Bojja Venkatakrishnan · Shreyan Gupta · Hongzi Mao · Mohammad Alizadeh |
Making AI Forget You: Data Deletion in Machine Learning | Antonio Ginart · Melody Guan · Gregory Valiant · James Zou |
SpArSe: Sparse Architecture Search for CNNs on Resource-Constrained Microcontrollers | Igor Fedorov · Ryan Adams · Matthew Mattina · Paul Whatmough |
The Synthesis of XNOR Recurrent Neural Networks with Stochastic Logic | Arash Ardakani · Zhengyun Ji · Amir Ardakani · Warren Gross |
Towards Hardware-Aware Tractable Learning of Probabilistic Models | Laura I Galindez Olascoaga · Wannes Meert · Nimish Shah · Marian Verhelst · Guy Van den Broeck |
Health [Top]
Attentive State-Space Modeling of Disease Progression | Ahmed Alaa · Mihaela van der Schaar |
Domain Generalization via Model-Agnostic Learning of Semantic Features | Qi Dou · Daniel Coelho de Castro · Konstantinos Kamnitsas · Ben Glocker |
Recurrent Registration Neural Networks for Deformable Image Registration | Robin Sandkühler · Simon Andermatt · Grzegorz Bauman · Sylvia Nyilas · Christoph Jud · Philippe C. Cattin |
Transfusion: Understanding Transfer Learning for Medical Imaging | Maithra Raghu · Chiyuan Zhang · Jon Kleinberg · Samy Bengio |
Image Segmentation [Top]
Information Retrieval [Top]
Cross-Modal Learning with Adversarial Samples | CHAO LI · Shangqian Gao · Cheng Deng · De Xie · Wei Liu |
Möbius Transformation for Fast Inner Product Search on Graph | Zhixin Zhou · Shulong Tan · Zhaozhuo Xu · Ping Li |
Rand-NSG: Fast Accurate Billion-point Nearest Neighbor Search on a Single Node | Suhas Jayaram Subramanya · Fnu Devvrit · Harsha Vardhan Simhadri · Ravishankar Krishnawamy · Rohan Kadekodi |
Matrix and Tensor Factorization [Top]
Crowdsourcing via Pairwise Co-occurrences: Identifiability and Algorithms | Shahana Ibrahim · Xiao Fu · Nikolaos Kargas · Kejun Huang |
Expressive power of tensor-network factorizations for probabilistic modeling | Ivan Glasser · Ryan Sweke · Nicola Pancotti · Jens Eisert · Ignacio Cirac |
Factor Group-Sparse Regularization for Efficient Low-Rank Matrix Recovery | Jicong Fan · Lijun Ding · Yudong Chen · Madeleine Udell |
Multiway clustering via tensor block models | Miaoyan Wang · Yuchen Zeng |
Singleshot : a scalable Tucker tensor decomposition | Abraham Traore · Maxime Berar · Alain Rakotomamonjy |
Natural Language Processing [Top]
SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems | Alex Wang · Yada Pruksachatkun · Nikita Nangia · Amanpreet Singh · Julian Michael · Felix Hill · Omer Levy · Samuel Bowman |
A Tensorized Transformer for Language Modeling | Xindian Ma · Peng Zhang · Shuai Zhang · Nan Duan · Yuexian Hou · Ming Zhou · Dawei Song |
AttentionXML: Label Tree-based Attention-Aware Deep Model for High-Performance Extreme Multi-Label Text Classification | Ronghui You · Zihan Zhang · Ziye Wang · Suyang Dai · Hiroshi Mamitsuka · Shanfeng Zhu |
Comparing Unsupervised Word Translation Methods Step by Step | Mareike Hartmann · Yova Kementchedjhieva · Anders Søgaard |
Glyce: Glyph-vectors for Chinese Character Representations | Yuxian Meng · Wei Wu · Fei Wang · Xiaoya Li · Ping Nie · Fan Yin · Muyu Li · Qinghong Han · Yuxian Meng · Jiwei Li |
Hierarchical Optimal Transport for Document Representation | Mikhail Yurochkin · Sebastian Claici · Edward Chien · Farzaneh Mirzazadeh · Justin M Solomon |
Improving Textual Network Learning with Variational Homophilic Embeddings | Wenlin Wang · Chenyang Tao · Zhe Gan · Guoyin Wang · Liqun Chen · Xinyuan Zhang · Ruiyi Zhang · Qian Yang · Ricardo Henao · Lawrence Carin |
Ouroboros: On Accelerating Training of Transformer-Based Language Models | Qian Yang · Zhouyuan Huo · Wenlin Wang · Lawrence Carin |
Fast Structured Decoding for Sequence Models | Zhiqing Sun · Zhuohan Li · Haoqing Wang · Di He · Zi Lin · Zhihong Deng |
Can Unconditional Language Models Recover Arbitrary Sentences? | Nishant Subramani · Samuel Bowman · Kyunghyun Cho |
Controllable Unsupervised Text Attribute Transfer via Editing Entangled Latent Representation | Ke Wang · Hang Hua · Xiaojun Wan |
Defending Against Neural Fake News | Rowan Zellers · Ari Holtzman · Hannah Rashkin · Yonatan Bisk · Ali Farhadi · Franziska Roesner · Yejin Choi |
Interpreting and improving natural-language processing (in machines) with natural language-processing (in the brain) | Mariya Toneva · Leila Wehbe |
Invariance and identifiability issues for word embeddings | Rachel Carrington · Karthik Bharath · Simon Preston |
Kernelized Bayesian Softmax for Text Generation | Ning Miao · Hao Zhou · Chengqi Zhao · Wenxian Shi · Lei Li |
Levenshtein Transformer | Jiatao Gu · Changhan Wang · Junbo Zhao |
Neural Machine Translation with Soft Prototype | Yiren Wang · Yingce Xia · Fei Tian · Fei Gao · Tao Qin · Cheng Xiang Zhai · Tie-Yan Liu |
Paraphrase Generation with Latent Bag of Words | Yao Fu · Yansong Feng · John Cunningham |
Unified Language Model Pre-training for Natural Language Understanding and Generation | Li Dong · Nan Yang · Wenhui Wang · Furu Wei · Xiaodong Liu · Yu Wang · Jianfeng Gao · Ming Zhou · Hsiao-Wuen Hon |
XLNet: Generalized Autoregressive Pretraining for Language Understanding | Zhilin Yang · Zihang Dai · Yiming Yang · Jaime Carbonell · Russ Salakhutdinov · Quoc V Le |
Network Analysis [Top]
Adaptive Influence Maximization with Myopic Feedback | Binghui Peng · Wei Chen |
Conditional Structure Generation through Graph Variational Generative Adversarial Nets | Carl Yang · Peiye Zhuang · Wenhan Shi · Alan Luu · Pan Li |
GOT: An Optimal Transport framework for Graph comparison | Hermina Petric Maretic · Mireille El Gheche · Giovanni Chierchia · Pascal Frossard |
KerGM: Kernelized Graph Matching | Zhen Zhang · Yijian Xiang · Lingfei Wu · Bing Xue · Arye Nehorai |
Optimizing Generalized PageRank Methods for Seed-Expansion Community Detection | Pan Li · I Chien · Olgica Milenkovic |
Variational Graph Recurrent Neural Networks | Ehsan Hajiramezanali · Arman Hasanzadeh · Krishna Narayanan · Nick Duffield · Mingyuan Zhou · Xiaoning Qian |
vGraph: A Generative Model for Joint Community Detection and Node Representation Learning | Fan-Yun Sun · Meng Qu · Jordan Hoffmann · Chin-Wei Huang · Jian Tang |
Object Detection [Top]
PerspectiveNet: 3D Object Detection from a Single RGB Image via Perspective Points | Siyuan Huang · Yixin Chen · Tao Yuan · Siyuan Qi · Yixin Zhu · Song-Chun Zhu |
Cascade RPN: Delving into High-Quality Region Proposal Network with Adaptive Convolution | Thang Vu · Hyunjun Jang · Trung X. Pham · Chang Yoo |
Consistency-based Semi-supervised Learning for Object detection | Jisoo Jeong · Seungeui Lee · Jeesoo Kim · Nojun Kwak |
FreeAnchor: Learning to Match Anchors for Visual Object Detection | Xiaosong Zhang · Fang Wan · Chang Liu · Rongrong Ji · Qixiang Ye |
One-Shot Object Detection with Co-Attention and Co-Excitation | Ting-I Hsieh · Yi-Chen Lo · Hwann-Tzong Chen · Tyng-Luh Liu |
Object Recognition [Top]
Learning Deep Bilinear Transformation for Fine-grained Image Representation | Heliang Zheng · Jianlong Fu · Zheng-Jun Zha · Jiebo Luo |
Learning Disentangled Representation for Robust Person Re-identification | Chanho Eom · Bumsub Ham |
Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss | Kaidi Cao · Colin Wei · Adrien Gaidon · Nikos Arechiga · Tengyu Ma |
Privacy, Anonymity, and Security [Top]
Program Understanding and Generation [Top]
Code Generation as a Dual Task of Code Summarization | Bolin Wei · Ge Li · Xin Xia · Zhiyi Fu · Zhi Jin |
Compiler Auto-Vectorization with Imitation Learning | Charith Mendis · Cambridge Yang · Yewen Pu · Dr.Saman Amarasinghe · Michael Carbin |
Learning Transferable Graph Exploration | Hanjun Dai · Yujia Li · Chenglong Wang · Rishabh Singh · Po-Sen Huang · Pushmeet Kohli |
Neural Attribution for Semantic Bug-Localization in Student Programs | Rahul Gupta · Aditya Kanade · Shirish Shevade |
Program Synthesis and Semantic Parsing with Learned Code Idioms | Eui Chul Shin · Miltiadis Allamanis · Marc Brockschmidt · Alex Polozov |
SPoC: Search-based Pseudocode to Code | Sumith Kulal · Panupong Pasupat · Kartik Chandra · Mina Lee · Oded Padon · Alex Aiken · Percy Liang |
Write, Execute, Assess: Program Synthesis with a REPL | Kevin Ellis · Maxwell Nye · Yewen Pu · Felix Sosa · Josh Tenenbaum · Armando Solar-Lezama |
Quantitative Finance and Econometrics [Top]
Cross-sectional Learning of Extremal Dependence among Financial Assets | Xing Yan · Qi Wu · Wen Zhang |
Recommender Systems [Top]
Text-Based Interactive Recommendation via Constraint-Augmented Reinforcement Learning | Ruiyi Zhang · Tong Yu · Yilin Shen · Hongxia Jin · Changyou Chen |
A Model-Based Reinforcement Learning with Adversarial Training for Online Recommendation | Xueying Bai · Jian Guan · Hongning Wang |
Joint Optimization of Tree-based Index and Deep Model for Recommender Systems | Han Zhu · Daqing Chang · Ziru Xu · Pengye Zhang · Xiang Li · Jie He · Han Li · Jian Xu · Kun Gai |
Robotics [Top]
Learning-In-The-Loop Optimization: End-To-End Control And Co-Design Of Soft Robots Through Learned Deep Latent Representations | Andrew Spielberg · Allan Zhao · Yuanming Hu · Tao Du · Wojciech Matusik · Daniela Rus |
Multiple Futures Prediction | Charlie Tang · Russ Salakhutdinov |
Neural Lyapunov Control | Ya-Chien Chang · Nima Roohi · Sicun Gao |
On Single Source Robustness in Deep Fusion Models | Taewan Kim · Joydeep Ghosh |
Third-Person Visual Imitation Learning via Decoupled Hierarchical Controller | Pratyusha Sharma · Deepak Pathak · Abhinav Gupta |
Signal Processing [Top]
Data-driven Estimation of Sinusoid Frequencies | Gautier Izacard · Sreyas Mohan · Carlos Fernandez-Granda |
Distribution Learning of a Random Spatial Field with a Location-Unaware Mobile Sensor | Meera Pai · Animesh Kumar |
Don't take it lightly: Phasing optical random projections with unknown operators | Sidharth Gupta · Remi Gribonval · Laurent Daudet · Ivan Dokmanić |
Sustainability [Top]
Seeing the Wind: Visual Wind Speed Prediction with a Coupled Convolutional and Recurrent Neural Network | Jennifer Cardona · Michael Howland · John Dabiri |
Time Series Analysis [Top]
Diffeomorphic Temporal Alignment Nets | Ron A Shapira Weber · Matan Eyal · Nicki Skafte · Oren Shriki · Oren Freifeld |
DTWNet: a Dynamic Time Warping Network | Xingyu Cai · Tingyang Xu · Jinfeng Yi · Junzhou Huang · Sanguthevar Rajasekaran |
Enhancing the Locality and Breaking the Memory Bottleneck of Transformer on Time Series Forecasting | Shiyang Li · Xiaoyong Jin · Yao Xuan · Xiyou Zhou · Wenhu Chen · Yu-Xiang Wang · Xifeng Yan |
Fully Neural Network based Model for General Temporal Point Processes | Takahiro Omi · naonori ueda · Kazuyuki Aihara |
GRU-ODE-Bayes: Continuous Modeling of Sporadically-Observed Time Series | Edward De Brouwer · Jaak Simm · Adam Arany · Yves Moreau |
High-dimensional multivariate forecasting with low-rank Gaussian Copula Processes | David Salinas · Michael Bohlke-Schneider · Laurent Callot · Roberto Medico · Jan Gasthaus |
Learning Latent Process from High-Dimensional Event Sequences via Efficient Sampling | Qitian Wu · Zixuan Zhang · Xiaofeng Gao · Junchi Yan · Guihai Chen |
Learning Representations for Time Series Clustering | Qianli Ma · Jiawei Zheng · Sen Li · Gary W Cottrell |
Multi-Resolution Weak Supervision for Sequential Data | Paroma Varma · Frederic Sala · Shiori Sagawa · Jason Fries · Daniel Fu · Saelig Khattar · Ashwini Ramamoorthy · Ke Xiao · Kayvon Fatahalian · James Priest · Christopher Ré |
Neural Jump Stochastic Differential Equations | Junteng Jia · Austin Benson |
Shape and Time Distortion Loss for Training Deep Time Series Forecasting Models | Vincent LE GUEN · Nicolas THOME |
Think Globally, Act Locally: A Deep Neural Network Approach to High-Dimensional Time Series Forecasting | Rajat Sen · Hsiang-Fu Yu · Inderjit S Dhillon |
Unsupervised Scalable Representation Learning for Multivariate Time Series | Jean-Yves Franceschi · Aymeric Dieuleveut · Martin Jaggi |
Tracking and Motion in Video [Top]
muSSP: Efficient Min-cost Flow Algorithm for Multi-object Tracking | Congchao Wang · Yizhi Wang · Yinxue Wang · Chiung-Ting Wu · Guoqiang Yu |
Region-specific Diffeomorphic Metric Mapping | Zhengyang Shen · Francois-Xavier Vialard · Marc Niethammer |
Social-BiGAT: Multimodal Trajectory Forecasting using Bicycle-GAN and Graph Attention Networks | Vineet Kosaraju · Amir Sadeghian · Roberto Martín-Martín · Ian Reid · Hamid Rezatofighi · Silvio Savarese |
Video Analysis [Top]
LiteEval: A Coarse-to-Fine Framework for Resource Efficient Video Recognition | Zuxuan Wu · Caiming Xiong · Yu-Gang Jiang · Larry Davis |
Recurrent Space-time Graph Neural Networks | Andrei Nicolicioiu · Iulia Duta · Marius Leordeanu |
Visual Question Answering [Top]
Visual Scene Analysis and Interpretation [Top]
Adaptively Aligned Image Captioning via Adaptive Attention Time | Lun Huang · Wenmin Wang · Yaxian Xia · Jie Chen |
Multiview Aggregation for Learning Category-Specific Shape Reconstruction | Srinath Sridhar · Davis Rempe · Julien Valentin · Bouaziz Sofien · Leonidas J Guibas |
TAB-VCR: Tags and Attributes based VCR Baselines | Jingxiang Lin · Unnat Jain · Alexander Schwing |
Weakly Supervised Instance Segmentation using the Bounding Box Tightness Prior | Cheng-Chun Hsu · Kuang-Jui Hsu · Chung-Chi Tsai · Yen-Yu Lin · Yung-Yu Chuang |
Web Applications and Internet Data [Top]
iSplit LBI: Individualized Partial Ranking with Ties via Split LBI | Qianqian Xu · Xinwei Sun · Zhiyong Yang · Xiaochun Cao · Qingming Huang · Yuan Yao |
Data, Challenges, Implementations, and Software
Benchmarks [Top]
Detecting Overfitting via Adversarial Examples | Roman Werpachowski · András György · Csaba Szepesvari |
Neuropathic Pain Diagnosis Simulator for Causal Discovery Algorithm Evaluation | Ruibo Tu · Kun Zhang · Bo Bertilson · Hedvig Kjellstrom · Cheng Zhang |
Data Sets or Data Repositories [Top]
Cold Case: The Lost MNIST Digits | Chhavi Yadav · Leon Bottou |
The Cells Out of Sample (COOS) dataset and benchmarks for measuring out-of-sample generalization of image classifiers | Alex Lu · Amy Lu · Wiebke Schormann · Marzyeh Ghassemi · David Andrews · Alan Moses |
ObjectNet: A large-scale bias-controlled dataset for pushing the limits of object recognition models | Andrei Barbu · David Mayo · Julian Alverio · William Luo · Christopher Wang · Dan Gutfreund · Josh Tenenbaum · Boris Katz |
Park: An Open Platform for Learning-Augmented Computer Systems | Hongzi Mao · Parimarjan Negi · Akshay Narayan · Hanrui Wang · Jiacheng Yang · Haonan Wang · Ryan Marcus · ravichandra addanki · Mehrdad Khani Shirkoohi · Songtao He · Vikram Nathan · Frank Cangialosi · Shaileshh Venkatakrishnan · Wei-Hung Weng · Song Han · Tim Kraska · Dr.Mohammad Alizadeh |
STREETS: A Novel Camera Network Dataset for Traffic Flow | Corey Snyder · Minh Do |
Software Toolkits [Top]
A Step Toward Quantifying Independently Reproducible Machine Learning Research | Edward Raff |
GENO -- GENeric Optimization for Classical Machine Learning | Soeren Laue · Matthias Mitterreiter · Joachim Giesen |
PyTorch: An Imperative Style, High-Performance Deep Learning Library | Adam Paszke · Sam Gross · Francisco Massa · Adam Lerer · James Bradbury · Gregory Chanan · Trevor Killeen · Zeming Lin · Natalia Gimelshein · Luca Antiga · Alban Desmaison · Andreas Kopf · Edward Yang · Zachary DeVito · Martin Raison · Alykhan Tejani · Sasank Chilamkurthy · Benoit Steiner · Lu Fang · Junjie Bai · Soumith Chintala |
Virtual Environments [Top]
PHYRE: A New Benchmark for Physical Reasoning | Anton Bakhtin · Laurens van der Maaten · Justin Johnson · Laura Gustafson · Ross Girshick |
Deep Learning
Adversarial Networks [Top]
Attention Models [Top]
Are Sixteen Heads Really Better than One? | Paul Michel · Omer Levy · Graham Neubig |
Compositional De-Attention Networks | Yi Tay · Anh Tuan Luu · Aston Zhang · Shuohang Wang · Siu Cheung Hui |
Geometry-Aware Neural Rendering | Joshua Tobin · Wojciech Zaremba · Pieter Abbeel |
Image Captioning: Transforming Objects into Words | Simao Herdade · Armin Kappeler · Kofi Boakye · Joao Soares |
Learning by Abstraction: The Neural State Machine | Drew Hudson · Christopher Manning |
Neural Shuffle-Exchange Networks - Sequence Processing in O(n log n) Time | Karlis Freivalds · Emīls Ozoliņš · Agris Šostaks |
Novel positional encodings to enable tree-based transformers | Vighnesh Shiv · Chris Quirk |
Self-attention with Functional Time Representation Learning | Da Xu · Chuanwei Ruan · Evren Korpeoglu · Sushant Kumar · Kannan Achan |
Understanding Attention and Generalization in Graph Neural Networks | Boris Knyazev · Graham W Taylor · Mohamed Amer |
Biologically Plausible Deep Networks [Top]
Structured and Deep Similarity Matching via Structured and Deep Hebbian Networks | Dina Obeid · Hugo Ramambason · Cengiz Pehlevan |
Deep Learning without Weight Transport | Mohamed Akrout · Collin Wilson · Peter Humphreys · Timothy Lillicrap · Douglas Tweed |
Neural networks grown and self-organized by noise | Guruprasad Raghavan · Matt Thomson |
Spike-Train Level Backpropagation for Training Deep Recurrent Spiking Neural Networks | Wenrui Zhang · Peng Li |
Surround Modulation: A Bio-inspired Connectivity Structure for Convolutional Neural Networks | Hosein Hasani · Mahdieh Soleymani · Hamid Aghajan |
Updates of Equilibrium Prop Match Gradients of Backprop Through Time in an RNN with Static Input | Maxence Ernoult · Benjamin Scellier · Yoshua Bengio · Damien Querlioz · Julie Grollier |
CNN Architectures [Top]
Deep Autoencoders [Top]
AGEM: Solving Linear Inverse Problems via Deep Priors and Sampling | Bichuan Guo · Yuxing Han · Jiangtao Wen |
Bat-G net: Bat-inspired High-Resolution 3D Image Reconstruction using Ultrasonic Echoes | Gunpil Hwang · Seohyeon Kim · Hyeon-Min Bae |
Continuous Hierarchical Representations with Poincaré Variational Auto-Encoders | Emile Mathieu · Charline Le Lan · Chris J. Maddison · Ryota Tomioka · Yee Whye Teh |
Efficient Inference Methods [Top]
Channel Gating Neural Networks | Weizhe Hua · Yuan Zhou · Christopher De Sa · Zhiru Zhang · G. Edward Suh |
Deconstructing Lottery Tickets: Zeros, Signs, and the Supermask | Hattie Zhou · Janice Lan · Rosanne Liu · Jason Yosinski |
Point-Voxel CNN for Efficient 3D Deep Learning | Zhijian Liu · Haotian Tang · Yujun Lin · Song Han |
Gate Decorator: Global Filter Pruning Method for Accelerating Deep Convolutional Neural Networks | Zhonghui You · Kun Yan · Jinmian Ye · Meng Ma · Ping Wang |
Inherent Weight Normalization in Stochastic Neural Networks | Georgios Detorakis · Sourav Dutta · Abhishek Khanna · Matthew Jerry · Suman Datta · Emre Neftci |
MetaQuant: Learning to Quantize by Learning to Penetrate Non-differentiable Quantization | Shangyu Chen · Wenya Wang · Sinno Jialin Pan |
Model Compression with Adversarial Robustness: A Unified Optimization Framework | Shupeng Gui · Haotao N Wang · Haichuan Yang · Chen Yu · Zhangyang Wang · Ji Liu |
Positive-Unlabeled Compression on the Cloud | Yixing Xu · Yunhe Wang · Hanting Chen · Kai Han · Chunjing XU · Dacheng Tao · Chang Xu |
Combining Generative and Discriminative Models for Hybrid Inference | Victor Garcia Satorras · Max Welling · Zeynep Akata |
Deep Model Transferability from Attribution Maps | Jie Song · Yixin Chen · Xinchao Wang · Chengchao Shen · Mingli Song |
Focused Quantization for Sparse CNNs | Yiren Zhao · Xitong Gao · Daniel Bates · Robert Mullins · Cheng-Zhong Xu |
Global Sparse Momentum SGD for Pruning Very Deep Neural Networks | Xiaohan Ding · guiguang ding · Xiangxin Zhou · Yuchen Guo · Jungong Han · Ji Liu |
Latent Weights Do Not Exist: Rethinking Binarized Neural Network Optimization | Koen Helwegen · James Widdicombe · Lukas Geiger · Zechun Liu · Kwang-Ting Cheng · Roeland Nusselder |
Normalization Helps Training of Quantized LSTM | Lu Hou · Jinhua Zhu · James Kwok · Fei Gao · Tao Qin · Tie-Yan Liu |
Post training 4-bit quantization of convolutional networks for rapid-deployment | Ron Banner · Yury Nahshan · Daniel Soudry |
SCAN: A Scalable Neural Networks Framework Towards Compact and Efficient Models | Linfeng Zhang · Zhanhong Tan · Jiebo Song · Jingwei Chen · Chenglong Bao · Kaisheng Ma |
Shallow RNN: Accurate Time-series Classification on Resource Constrained Devices | Don Dennis · Durmus Alp Emre Acar · Vikram Mandikal · Vinu Sankar Sadasivan · Venkatesh Saligrama · Harsha Vardhan Simhadri · Prateek Jain |
Efficient Training Methods [Top]
A Fourier Perspective on Model Robustness in Computer Vision | Dong Yin · Raphael Gontijo Lopes · Jon Shlens · Ekin Dogus Cubuk · Justin Gilmer |
A Graph Theoretic Framework of Recomputation Algorithms for Memory-Efficient Backpropagation | Mitsuru Kusumoto · Takuya Inoue · Gentaro Watanabe · Takuya Akiba · Masanori Koyama |
A Mean Field Theory of Quantized Deep Networks: The Quantization-Depth Trade-Off | Yaniv Blumenfeld · Dar Gilboa · Daniel Soudry |
AutoAssist: A Framework to Accelerate Training of Deep Neural Networks | Jiong Zhang · Hsiang-Fu Yu · Inderjit S Dhillon |
Backprop with Approximate Activations for Memory-efficient Network Training | Ayan Chakrabarti · Benjamin Moseley |
Bridging Machine Learning and Logical Reasoning by Abductive Learning | Wang-Zhou Dai · Qiuling Xu · Yang Yu · Zhi-Hua Zhou |
E2-Train: Training State-of-the-art CNNs with Over 80% Less Energy | Ziyu Jiang · Yue Wang · Xiaohan Chen · Pengfei Xu · Yang Zhao · Yingyan Lin · Zhangyang Wang |
Hybrid 8-bit Floating Point (HFP8) Training and Inference for Deep Neural Networks | Xiao Sun · Jungwook Choi · Chia-Yu Chen · Naigang Wang · Swagath Venkataramani · Vijayalakshmi (Viji) Srinivasan · Xiaodong Cui · Wei Zhang · Kailash Gopalakrishnan |
Initialization of ReLUs for Dynamical Isometry | Rebekka Burkholz · Alina Dubatovka |
Invert to Learn to Invert | Patrick Putzky · Max Welling |
Learning Data Manipulation for Augmentation and Weighting | Zhiting Hu · Bowen Tan · Russ Salakhutdinov · Tom Mitchell · Eric Xing |
Robust Bi-Tempered Logistic Loss Based on Bregman Divergences | Ehsan Amid · Manfred K. Warmuth · Rohan Anil · Tomer Koren |
When does label smoothing help? | Rafael Müller · Simon Kornblith · Geoffrey E Hinton |
Embedding Approaches [Top]
Breaking the Glass Ceiling for Embedding-Based Classifiers for Large Output Spaces | Chuan Guo · Ali Mousavi · Xiang Wu · Daniel Holtmann-Rice · Satyen Kale · Sashank Reddi · Sanjiv Kumar |
End to end learning and optimization on graphs | Bryan Wilder · Eric Ewing · Bistra Dilkina · Milind Tambe |
On the Downstream Performance of Compressed Word Embeddings | Avner May · Jian Zhang · Tri Dao · Christopher Ré |
Quantum Embedding of Knowledge for Reasoning | Dinesh Garg · Shajith Ikbal Mohamed · Santosh K. Srivastava · Harit Vishwakarma · Hima Karanam · L Venkata Subramaniam |
Self-Supervised Deep Learning on Point Clouds by Reconstructing Space | Bjarne Sievers · Jonathan Sauder |
Embedding Symbolic Knowledge into Deep Networks | Xie Yaqi · Ziwei Xu · Kuldeep S Meel · Mohan Kankanhalli · Harold Soh |
Spherical Text Embedding | Yu Meng · Jiaxin Huang · Guangyuan Wang · Chao Zhang · Honglei Zhuang · Lance Kaplan · Jiawei Han |
Stochastic Shared Embeddings: Data-driven Regularization of Embedding Layers | Liwei Wu · Shuqing Li · Cho-Jui Hsieh · James Sharpnack |
Generative Models [Top]
A Primal-Dual link between GANs and Autoencoders | Hisham Husain · Richard Nock · Robert Williamson |
A Prior of a Googol Gaussians: a Tensor Ring Induced Prior for Generative Models | Maxim Kuznetsov · Daniil Polykovskiy · Dmitry Vetrov · Alex Zhebrak |
Adversarial Self-Defense for Cycle-Consistent GANs | Dina Bashkirova · Ben Usman · Kate Saenko |
Controllable Text-to-Image Generation | Bowen Li · Xiaojuan Qi · Thomas Lukasiewicz · Philip Torr |
Dancing to Music | Hsin-Ying Lee · Xiaodong Yang · Ming-Yu Liu · Ting-Chun Wang · Yu-Ding Lu · Ming-Hsuan Yang · Jan Kautz |
DppNet: Approximating Determinantal Point Processes with Deep Networks | Zelda Mariet · Yaniv Ovadia · Jasper Snoek |
Efficient Graph Generation with Graph Recurrent Attention Networks | Renjie Liao · Yujia Li · Yang Song · Shenlong Wang · Will Hamilton · David Duvenaud · Raquel Urtasun · Richard Zemel |
Explicit Disentanglement of Appearance and Perspective in Generative Models | Nicki Skafte · Søren Hauberg |
Flow-based Image-to-Image Translation with Feature Disentanglement | Ruho Kondo · Keisuke Kawano · Satoshi Koide · Takuro Kutsuna |
Generalization in Generative Adversarial Networks: A Novel Perspective from Privacy Protection | Bingzhe Wu · Shiwan Zhao · Chaochao Chen · Haoyang Xu · Li Wang · Xiaolu Zhang · Guangyu Sun · Jun Zhou |
Improved Precision and Recall Metric for Assessing Generative Models | Tuomas Kynkäänniemi · Tero Karras · Samuli Laine · Jaakko Lehtinen · Timo Aila |
Knowledge Extraction with No Observable Data | Jaemin Yoo · Minyong Cho · Taebum Kim · U Kang |
Learn, Imagine and Create: Text-to-Image Generation from Prior Knowledge | Tingting Qiao · Jing Zhang · Duanqing Xu · Dacheng Tao |
PasteGAN: A Semi-Parametric Method to Generate Image from Scene Graph | Yikang LI · Tao Ma · Yeqi Bai · Nan Duan · Sining Wei · Xiaogang Wang |
Sequential Neural Processes | Gautam Singh · Jaesik Yoon · Youngsung Son · Sungjin Ahn |
Unsupervised Keypoint Learning for Guiding Class-Conditional Video Prediction | Yunji Kim · Seonghyeon Nam · In Cho · Seon Joo Kim |
Adaptive Density Estimation for Generative Models | Thomas Lucas · Konstantin Shmelkov · Karteek Alahari · Cordelia Schmid · Jakob Verbeek |
Adversarial Fisher Vectors for Unsupervised Representation Learning | Joshua Susskind · Shuangfei Zhai · Walter Talbott · Carlos Guestrin |
Co-Generation with GANs using AIS based HMC | Tiantian Fang · Alexander Schwing |
Compression with Flows via Local Bits-Back Coding | Jonathan Ho · Evan Lohn · Pieter Abbeel |
Direct Optimization through \arg \max for Discrete Variational Auto-Encoder | Guy Lorberbom · Tommi Jaakkola · Andreea Gane · Tamir Hazan |
Fast and Provable ADMM for Learning with Generative Priors | Fabian Latorre · Armin eftekhari · Volkan Cevher |
Generative Modeling by Estimating Gradients of the Data Distribution | Yang Song · Stefano Ermon |
HYPE: A Benchmark for Human eYe Perceptual Evaluation of Generative Models | Sharon Zhou · Mitchell Gordon · Ranjay Krishna · Austin Narcomey · Li Fei-Fei · Michael Bernstein |
Implicit Generation and Modeling with Energy Based Models | Yilun Du · Igor Mordatch |
Invertible Convolutional Flow | Mahdi Karami · Dale Schuurmans · Jascha Sohl-Dickstein · Laurent Dinh · Daniel Duckworth |
Latent Ordinary Differential Equations for Irregularly-Sampled Time Series | Yulia Rubanova · Tian Qi Chen · David Duvenaud |
MaCow: Masked Convolutional Generative Flow | Xuezhe Ma · Xiang Kong · Shanghang Zhang · Eduard Hovy |
Mining GOLD Samples for Conditional GANs | Sangwoo Mo · Chiheon Kim · Sungwoong Kim · Minsu Cho · Jinwoo Shin |
Learning Non-Convergent Non-Persistent Short-Run MCMC Toward Energy-Based Model | Erik Nijkamp · Mitch Hill · Song-Chun Zhu · Ying Nian Wu |
Residual Flows for Invertible Generative Modeling | Tian Qi Chen · Jens Behrmann · David Duvenaud · Joern-Henrik Jacobsen |
Time-series Generative Adversarial Networks | Jinsung Yoon · Daniel Jarrett · M Van Der Schaar |
Twin Auxilary Classifiers GAN | Mingming Gong · Yanwu Xu · Chunyuan Li · Kun Zhang · Kayhan Batmanghelich |
Deep Generative Video Compression | Salvator Lombardo · JUN HAN · Christopher Schroers · Stephan Mandt |
A Model to Search for Synthesizable Molecules | John Bradshaw · Brooks Paige · Matt Kusner · Marwin Segler · José Miguel Hernández-Lobato |
BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling | Lars Maaløe · Marco Fraccaro · Valentin Liévin · Ole Winther |
Classification Accuracy Score for Conditional Generative Models | Suman Ravuri · Oriol Vinyals |
Discrete Flows: Invertible Generative Models of Discrete Data | Dustin Tran · Keyon Vafa · Kumar Agrawal · Laurent Dinh · Ben Poole |
First Order Motion Model for Image Animation | Aliaksandr Siarohin · Stéphane Lathuillère · Sergey Tulyakov · Elisa Ricci · Nicu Sebe |
G2SAT: Learning to Generate SAT Formulas | Jiaxuan You · Haoze Wu · Clark Barrett · Raghuram Ramanujan · Jure Leskovec |
Multi-objects Generation with Amortized Structural Regularization | Taufik Xu · Chongxuan LI · Jun Zhu · Bo Zhang |
Neural Multisensory Scene Inference | Jae Hyun Lim · Pedro O. Pinheiro · Negar Rostamzadeh · Chris Pal · Sungjin Ahn |
Neural Spline Flows | Conor Durkan · Artur Bekasov · Iain Murray · George Papamakarios |
Progressive Augmentation of GANs | Dan Zhang · Anna Khoreva |
Quantum Wasserstein Generative Adversarial Networks | Shouvanik Chakrabarti · Huang Yiming · Tongyang Li · Soheil Feizi · Xiaodi Wu |
Energy-Inspired Models: Learning with Sampler-Induced Distributions | John Lawson · George Tucker · Bo Dai · Rajesh Ranganath |
Sequence Modeling with Unconstrained Generation Order | Dmitrii Emelianenko · Elena Voita · Pavel Serdyukov |
Symmetry-adapted generation of 3d point sets for the targeted discovery of molecules | Niklas Gebauer · Michael Gastegger · Kristof Schütt |
Don't Blame the ELBO! A Linear VAE Perspective on Posterior Collapse | James Lucas · George Tucker · Roger Grosse · Mohammad Norouzi |
Unsupervised Learning of Object Keypoints for Perception and Control | Tejas Kulkarni · Ankush Gupta · Catalin Ionescu · Sebastian Borgeaud · Malcolm Reynolds · Andrew Zisserman · Volodymyr Mnih |
A Domain Agnostic Measure for Monitoring and Evaluating GANs | Paulina Grnarova · Kfir Y. Levy · Aurelien Lucchi · Nathanael Perraudin · Ian Goodfellow · Thomas Hofmann · Andreas Krause |
Bias Correction of Learned Generative Models using Likelihood-Free Importance Weighting | Aditya Grover · Jiaming Song · Ashish Kapoor · Kenneth Tran · Alekh Agarwal · Eric Horvitz · Stefano Ermon |
Copulas as High-Dimensional Generative Models: Vine Copula Autoencoders | Natasa Tagasovska · Damien Ackerer · Thibault Vatter |
Deep Random Splines for Point Process Intensity Estimation of Neural Population Data | Gabriel Loaiza-Ganem · Sean Perkins · Karen Schroeder · Mark Churchland · John Cunningham |
Discrete Object Generation with Reversible Inductive Construction | Ari Seff · Wenda Zhou · Farhan Damani · Abigail Doyle · Ryan Adams |
Generating Diverse High-Fidelity Images with VQ-VAE-2 | Ali Razavi · Aaron van den Oord · Oriol Vinyals |
Generative Well-intentioned Networks | Justin Cosentino · Jun Zhu |
Graph Normalizing Flows | Jenny Liu · Aviral Kumar &mmiddot; Jimmy Ba · Jamie Kiros · Kevin Swersky |
Icebreaker: Element-wise Efficient Information Acquisition with a Bayesian Deep Latent Gaussian Model | Wenbo Gong · Sebastian Tschiatschek · Sebastian Nowozin · Richard E Turner · José Miguel Hernández-Lobato · Cheng Zhang |
Integer Discrete Flows and Lossless Compression | Emiel Hoogeboom · Jorn Peters · Rianne van den Berg · Max Welling |
Amortized Bethe Free Energy Minimization for Learning MRFs | Sam Wiseman · Yoon Kim |
MintNet: Building Invertible Neural Networks with Masked Convolutions | Yang Song · Chenlin Meng · Stefano Ermon |
NAOMI: Non-Autoregressive Multiresolution Sequence Imputation | Yukai Liu · Rose Yu · Stephan Zheng · Eric Zhan · Yisong Yue |
ODE2VAE: Deep generative second order ODEs with Bayesian neural networks | Cagatay Yildiz · Markus Heinonen · Harri Lahdesmaki |
Scalable Deep Generative Relational Model with High-Order Node Dependence | Xuhui Fan · Bin Li · Caoyuan Li · Scott SIsson · Ling Chen |
Variational Mixture-of-Experts Autoencoders for Multi-Modal Deep Generative Models | Yuge Shi · Siddharth N · Brooks Paige · Philip Torr |
Variational Temporal Abstraction | Taesup Kim · Sungjin Ahn · Yoshua Bengio |
Interaction-Based Deep Networks [Top]
GNNExplainer: Generating Explanations for Graph Neural Networks | Zhitao Ying · Dylan Bourgeois · Jiaxuan You · Marinka Zitnik · Jure Leskovec |
Memory-Augmented Neural Networks [Top]
Episodic Memory in Lifelong Language Learning | Cyprien de Masson d'Autume · Sebastian Ruder · Lingpeng Kong · Dani Yogatama |
Generalization of Reinforcement Learners with Working and Episodic Memory | Meire Fortunato · Melissa Tan · Ryan Faulkner · Steven Hansen · Adrià Puigdomènech Badia · Gavin Buttimore · Charles Deck · Joel Leibo · Charles Blundell |
Large Memory Layers with Product Keys | Guillaume Lample · Alexandre Sablayrolles · Marc'Aurelio Ranzato · Ludovic Denoyer · Herve Jegou |
Ordered Memory | Yikang Shen · Shawn Tan · Arian Hosseini · Zhouhan Lin · Alessandro Sordoni · Aaron Courville |
Optimization for Deep Networks [Top]
Predictive Models [Top]
A Simple Baseline for Bayesian Uncertainty in Deep Learning | Wesley J Maddox · Pavel Izmailov · Timur Garipov · Dmitry Vetrov · Andrew Gordon Wilson |
DRUM: End-To-End Differentiable Rule Mining On Knowledge Graphs | Ali Sadeghian · Mohammadreza Armandpour · Patrick Ding · Daisy Zhe Wang |
High Fidelity Video Prediction with Large Stochastic Recurrent Neural Networks | Ruben Villegas · Arkanath Pathak · Harini Kannan · Dumitru Erhan · Quoc V Le · Honglak Lee |
Unsupervised learning of object structure and dynamics from videos | Matthias Minderer · Chen Sun · Ruben Villegas · Forrester Cole · Kevin Murphy · Honglak Lee |
Recurrent Networks [Top]
Supervised Deep Networks [Top]
Combinatorial Inference against Label Noise | Paul Hongsuck Seo · Geeho Kim · Bohyung Han |
Deep Signature Transforms | Patrick Kidger · Patric Bonnier · Imanol Perez Arribas · Cristopher Salvi · Terry Lyons |
Data Parameters: A New Family of Parameters for Learning a Differentiable Curriculum | Shreyas Saxena · Oncel Tuzel · Dennis DeCoste |
Implicit Semantic Data Augmentation for Deep Networks | Yulin Wang · Xuran Pan · Shiji Song · Hong Zhang · Gao Huang · Cheng Wu |
Is Deeper Better only when Shallow is Good? | Eran Malach · Shai Shalev-Shwartz |
No-Press Diplomacy: Modeling Multi-Agent Gameplay | Philip Paquette · Yuchen Lu · SETON STEVEN BOCCO · Max Smith · Satya O.-G. · Jonathan K. Kummerfeld · Joelle Pineau · Satinder Singh · Aaron Courville |
Riemannian batch normalization for SPD neural networks | Daniel Brooks · Olivier Schwander · Frederic Barbaresco · Jean-Yves Schneider · Matthieu Cord |
Visualization or Exposition Techniques for Deep Networks [Top]
A Benchmark for Interpretability Methods in Deep Neural Networks | Sara Hooker · Dumitru Erhan · Pieter-Jan Kindermans · Been Kim |
Accurate, reliable and fast robustness evaluation | Wieland Brendel · Jonas Rauber · Matthias Kümmerer · Ivan Ustyuzhaninov · Matthias Bethge |
Approximate Feature Collisions in Neural Nets | Ke Li · Tianhao Zhang · Jitendra Malik |
Computing Linear Restrictions of Neural Networks | Matthew Sotoudeh · Aditya V Thakur |
CXPlain: Causal Explanations for Model Interpretation under Uncertainty | Patrick Schwab · Walter Karlen |
Deliberative Explanations: visualizing network insecurities | Pei Wang · Nuno Nvasconcelos |
Explanations can be manipulated and geometry is to blame | Ann-Kathrin Dombrowski · Maximillian Alber · Christopher Anders · Marcel Ackermann · Klaus-Robert Müller · Pan Kessel |
Fooling Neural Network Interpretations via Adversarial Model Manipulation | Juyeon Heo · Sunghwan Joo · Taesup Moon |
Full-Gradient Representation for Neural Network Visualization | Suraj Srinivas · François Fleuret |
Grid Saliency for Context Explanations of Semantic Segmentation | Lukas Hoyer · Mauricio Munoz · Prateek Katiyar · Anna Khoreva · Volker Fischer |
Intrinsic dimension of data representations in deep neural networks | Alessio Ansuini · Alessandro Laio · Jakob H Macke · Davide Zoccolan |
One ticket to win them all: generalizing lottery ticket initializations across datasets and optimizers | Ari Morcos · Haonan Yu · Michela Paganini · Yuandong Tian |
The Geometry of Deep Networks: Power Diagram Subdivision | Randall Balestriero · Romain Cosentino · Behnaam Aazhang · Richard Baraniuk |
Visualizing and Measuring the Geometry of BERT | Emily Reif · Ann Yuan · Martin Wattenberg · Fernanda B Viegas · Andy Coenen · Adam Pearce · Been Kim |
Visualizing the PHATE of Neural Networks | Scott Gigante · Adam S Charles · Smita Krishnaswamy · Gal Mishne |
Neuroscience and Cognitive Science
Brain Imaging [Top]
A state-space model for inferring effective connectivity of latent neural dynamics from simultaneous EEG/fMRI | Tao Tu · John Paisley · Stefan Haufe · Paul Sajda |
Manifold-regression to predict from MEG/EEG brain signals without source modeling | David Sabbagh · Pierre Ablin · Gael Varoquaux · Alexandre Gramfort · Denis A. Engemann |
Brain Mapping [Top]
Inducing brain-relevant bias in natural language processing models | Dan Schwartz · Mariya Toneva · Leila Wehbe |
Brain--Computer Interfaces and Neural Prostheses [Top]
Deep Multi-State Dynamic Recurrent Neural Networks Operating on Wavelet Based Neural Features for Robust Brain Machine Interfaces | Benyamin Allahgholizadeh Haghi · Spencer Kellis · Sahil Shah · Maitreyi Ashok · Luke Bashford · Daniel Kramer · Brian Lee · Charles Liu · Richard Andersen · Azita Emami |
Dynamic Ensemble Modeling Approach to Nonstationary Neural Decoding in Brain-Computer Interfaces | Yu Qi · Bin Liu · Yueming Wang · Gang Pan |
Efficient characterization of electrically evoked responses for neural interfaces | Nishal Shah · Sasidhar Madugula · Pawel Hottowy · Alexander Sher · Alan Litke · Liam Paninski · E.J. Chichilnisky |
Enabling hyperparameter optimization in sequential autoencoders for spiking neural data | Mohammad Reza Keshtkaran · Chethan Pandarinath |
Cognitive Science [Top]
A Bayesian Theory of Conformity in Collective Decision Making | Koosha Khalvati · Saghar Mirbagheri · Seongmin A. Park · Jean-Claude Dreher · Rajesh PN Rao |
Modeling Expectation Violation in Intuitive Physics with Coarse Probabilistic Object Representations | Kevin Smith · Lingjie Mei · Shunyu Yao · Jiajun Wu · Elizabeth Spelke · Josh Tenenbaum · Tomer Ullman |
Compositional generalization through meta sequence-to-sequence learning | Brenden Lake |
Universality and individuality in neural dynamics across large populations of recurrent networks | Niru Maheswaranathan · Alex Williams · Matthew Golub · Surya Ganguli · David Sussillo |
Connectomics [Top]
Learning Macroscopic Brain Connectomes via Group-Sparse Factorization | Farzane Aminmansour · Andrew Patterson · Lei Le · Yisu Peng · Daniel Mitchell · Franco Pestilli · Cesar Caiafa · Russell Greiner · Martha White |
Human or Animal Learning [Top]
Coordinated hippocampal-entorhinal replay as structural inference | Talfan Evans · Neil Burgess |
Disentangled behavioural representations | Amir Dezfouli · Hassan Ashtiani · Omar Ghattas · Richard Nock · Peter Dayan · Cheng Soon Ong |
Teaching Multiple Concepts to a Forgetful Learner | Anette Hunziker · Yuxin Chen · Oisin Mac Aodha · Manuel Gomez Rodriguez · Andreas Krause · Pietro Perona · Yisong Yue · Adish Singla |
Language for Cognitive Science [Top]
Anti-efficient encoding in emergent communication | Rahma Chaabouni · Eugene Kharitonov · Emmanuel Dupoux · Marco Baroni |
Memory [Top]
Push-pull Feedback Implements Hierarchical Information Retrieval Efficiently | Xiao Liu · Xiaolong Zou · Zilong Ji · Gengshuo Tian · Yuanyuan Mi · Tiejun Huang · K. Y. Michael Wong · Si Wu |
Neural Coding [Top]
Neuroscience [Top]
A coupled autoencoder approach for multi-modal analysis of cell types | Rohan Gala · Nathan Gouwens · Zizhen Yao · Agata Budzillo · Osnat Penn · Bosiljka Tasic · Gabe Murphy · Hongkui Zeng · Uygar Sümbül |
A neurally plausible model learns successor representations in partially observable environments | Eszter Vértes · Maneesh Sahani |
Scalable Bayesian inference of dendritic voltage via spatiotemporal recurrent state space models | Ruoxi Sun · Ian Kinsella · Scott Linderman · Liam Paninski |
Scalable Spike Source Localization in Extracellular Recordings using Amortized Variational Inference | Cole Hurwitz · Kai Xu · Akash Srivastava · Alessio Buccino · Matthias Hennig |
Weight Agnostic Neural Networks | Adam Gaier · David Ha |
A Similarity-preserving Network Trained on Transformed Images Recapitulates Salient Features of the Fly Motion Detection Circuit | Yanis Bahroun · Dmitri Chklovskii · Anirvan Sengupta |
BehaveNet: nonlinear embedding and Bayesian neural decoding of behavioral videos | Eleanor Batty · Matthew Whiteway · Shreya Saxena · Dan Biderman · Taiga Abe · Simon Musall · Winthrop Gillis · Jeffrey Markowitz · Anne Churchland · John Cunningham · Sandeep R Datta · Scott Linderman · Liam Paninski |
Brain-Like Object Recognition with High-Performing Shallow Recurrent ANNs | Jonas Kubilius · Martin Schrimpf · Ha Hong · Najib Majaj · Rishi Rajalingham · Elias Issa · Kohitij Kar · Pouya Bashivan · Jonathan Prescott-Roy · Kailyn Schmidt · Aran Nayebi · Daniel Bear · Daniel Yamins · James J DiCarlo |
Infra-slow brain dynamics as a marker for cognitive function and decline | Shagun Ajmera Shyam Sunder Ajmera · Shreya Rajagopal · Razi Rehman · Devarajan Sridharan |
Perception [Top]
Metamers of neural networks reveal divergence from human perceptual systems | Jenelle Feather · Alex Durango · Ray Gonzalez · Josh McDermott |
Problem Solving [Top]
Interval timing in deep reinforcement learning agents | Ben Deverett · Ryan Faulkner · Meire Fortunato · Gregory Wayne · Joel Leibo |
Reasoning [Top]
Abstract Reasoning with Distracting Features | Kecheng Zheng · Zheng-Jun Zha · Wei Wei |
Learning Perceptual Inference by Contrasting | Chi Zhang · Baoxiong Jia · Feng Gao · Yixin Zhu · HongJing Lu · Song-Chun Zhu |
Visual Perception [Top]
From deep learning to mechanistic understanding in neuroscience: the structure of retinal prediction | Hidenori Tanaka · Aran Nayebi · Niru Maheswaranathan · Lane McIntosh · Stephen Baccus · Surya Ganguli |
From voxels to pixels and back: Self-supervision in natural-image reconstruction from fMRI | Roman Beliy · Guy Gaziv · Assaf Hoogi · Francesca Strappini · Tal Golan · Michal Irani |
Neural Taskonomy: Inferring the Similarity of Task-Derived Representations from Brain Activity | Yuan Wang · Michael Tarr · Leila Wehbe |
Perceiving the arrow of time in autoregressive motion | Kristof Meding · Dominik Janzing · Bernhard Schölkopf · Felix A. Wichmann |
Visual Sequence Learning in Hierarchical Prediction Networks and Primate Visual Cortex | JIELIN QIU · Ge Huang · Tai Sing Lee |
Optimization
Combinatorial Optimization [Top]
A Graph Theoretic Additive Approximation of Optimal Transport | Nathaniel Lahn · Deepika Mulchandani · Sharath Raghvendra |
Combinatorial Bayesian Optimization using the Graph Cartesian Product | Changyong Oh · Jakub Tomczak · Efstratios Gavves · Max Welling |
Exact Combinatorial Optimization with Graph Convolutional Neural Networks | Maxime Gasse · Didier Chetelat · Nicola Ferroni · Laurent Charlin · Andrea Lodi |
Learning Local Search Heuristics for Boolean Satisfiability | Emre Yolcu · Barnabas Poczos |
Learning to Perform Local Rewriting for Combinatorial Optimization | Xinyun Chen · Yuandong Tian |
Convex Optimization [Top]
Non-Convex Optimization [Top]
Stochastic Optimization [Top]
Submodular Optimization [Top]
Adaptive Sequence Submodularity | Marko Mitrovic · Ehsan Kazemi · Moran Feldman · Andreas Krause · Amin Karbasi |
Fast Decomposable Submodular Function Minimization using Constrained Total Variation | Senanayak Sesh Kumar Karri · Francis Bach · Thomas Pock |
Fast Parallel Algorithms for Statistical Subset Selection Problems | Sharon Qian · Yaron Singer |
Interlaced Greedy Algorithm for Maximization of Submodular Functions in Nearly Linear Time | Alan Kuhnle |
Online Continuous Submodular Maximization: From Full-Information to Bandit Feedback | Mingrui Zhang · Lin Chen · Hamed Hassani · Amin Karbasi |
Stochastic Continuous Greedy ++: When Upper and Lower Bounds Match | Amin Karbasi · Hamed Hassani · Aryan Mokhtari · Zebang Shen |
Submodular Function Minimization with Noisy Evaluation Oracle | Shinji Ito |
Probabilistic Methods
Bayesian Nonparametrics [Top]
Optimistic Distributionally Robust Optimization for Nonparametric Likelihood Approximation | Viet Anh Nguyen · Soroosh Shafieezadeh Abadeh · Man-Chung Yue · Daniel Kuhn · Wolfram Wiesemann |
Low-Complexity Nonparametric Bayesian Online Prediction with Universal Guarantees | Alix LHERITIER · Frederic Cazals |
Random Tessellation Forests | Shufei Ge · Shijia Wang · Yee Whye Teh · Liangliang Wang · Lloyd Elliott |
Belief Propagation [Top]
Fast Convergence of Belief Propagation to Global Optima: Beyond Correlation Decay | Frederic Koehler |
Hyper-Graph-Network Decoders for Block Codes | Eliya Nachmani · Lior Wolf |
Causal Inference [Top]
Distributed Inference [Top]
Robust Multi-agent Counterfactual Prediction | Alexander Peysakhovich · Christian Kroer · Adam Lerer |
Statistical Model Aggregation via Parameter Matching | Mikhail Yurochkin · Mayank Agarwal · Soumya Ghosh · Kristjan Greenewald · Nghia Hoang |
Gaussian Processes [Top]
Implicit Posterior Variational Inference for Deep Gaussian Processes | Haibin YU · Yizhou Chen · Bryan Kian Hsiang Low · Patrick Jaillet · Zhongxiang Dai |
Multivariate Sparse Coding of Nonstationary Covariances with Gaussian Processes | Rui Li |
Nonparametric Regressive Point Processes Based on Conditional Gaussian Processes | Siqi Liu · Milos Hauskrecht |
Offline Contextual Bayesian Optimization | Ian Char · Youngseog Chung · Willie Neiswanger · Kirthevasan Kandasamy · Oak Nelson · Mark Boyer · Egemen Kolemen · Jeff Schneider |
Scalable Bayesian dynamic covariance modeling with variational Wishart and inverse Wishart processes | Creighton Heaukulani · Mark van der Wilk |
Spatially Aggregated Gaussian Processes with Multivariate Areal Outputs | Yusuke Tanaka · Toshiyuki Tanaka · Tomoharu Iwata · Takeshi Kurashima · Maya Okawa · Yasunori Akagi · Hiroyuki Toda |
Uniform Error Bounds for Gaussian Process Regression with Application to Safe Control | Armin Lederer · Jonas Umlauft · Sandra Hirche |
Band-Limited Gaussian Processes: The Sinc Kernel | Felipe Tobar |
Exact Gaussian Processes on a Million Data Points | Ke Wang · Geoff Pleiss · Jacob Gardner · Stephen Tyree · Kilian Weinberger · Andrew Gordon Wilson |
Function-Space Distributions over Kernels | Gregory Benton · Wesley J Maddox · Jayson Salkey · Julio Albinati · Andrew Gordon Wilson |
Modeling Dynamic Functional Connectivity with Latent Factor Gaussian Processes | Lingge Li · Dustin Pluta · Babak Shahbaba · Norbert Fortin · Hernando Ombao · Pierre Baldi |
Multi-resolution Multi-task Gaussian Processes | Oliver Hamelijnck · Theodoros Damoulas · Kangrui Wang · Mark Girolami |
Multi-task Learning for Aggregated Data using Gaussian Processes | Fariba Yousefi · Michael T Smith · Mauricio Álvarez |
Structured Variational Inference in Continuous Cox Process Models | Virginia Aglietti · Edwin Bonilla · Theodoros Damoulas · Sally Cripps |
Graphical Models [Top]
An Algorithm to Learn Polytree Networks with Hidden Nodes | Firoozeh Sepehr · Donatello Materassi |
Approximating the Permanent by Sampling from Adaptive Partitions | Jonathan Kuck · Tri Dao · Hamid Rezatofighi · Ashish Sabharwal · Stefano Ermon |
Bayesian Joint Estimation of Multiple Graphical Models | Lingrui Gan · Xinming Yang · Naveen Narisetty · Feng Liang |
Counting the Optimal Solutions in Graphical Models | Radu Marinescu · Rina Dechter |
Direct Estimation of Differential Functional Graphical Models | Boxin Zhao · Y. Samuel Wang · Mladen Kolar |
On Tractable Computation of Expected Predictions | Pasha Khosravi · YooJung Choi · Yitao Liang · Antonio Vergari · Guy Van den Broeck |
Smoothing Structured Decomposable Circuits | Andy Shih · Guy Van den Broeck · Paul Beame · Antoine Amarilli |
Sparse Logistic Regression Learns All Discrete Pairwise Graphical Models | Shanshan Wu · Sujay Sanghavi · Alexandros Dimakis |
Structured Graph Learning Via Laplacian Spectral Constraints | Sandeep Kumar · Jiaxi Ying · Jose Vinicius de Miranda Cardoso · Daniel Palomar |
Hierarchical Models [Top]
Learning Hierarchical Priors in VAEs | Alexej Klushyn · Nutan Chen · Richard Kurle · Botond Cseke · Patrick van der Smagt |
Poisson-Randomized Gamma Dynamical Systems | Aaron Schein · Scott Linderman · Mingyuan Zhou · David Blei · Hanna Wallach |
Reconciling meta-learning and continual learning with online mixtures of tasks | Ghassen Jerfel · Erin Grant · Tom Griffiths · Katherine Heller |
Latent Variable Models [Top]
Bayesian Learning of Sum-Product Networks | Martin Trapp · Robert Peharz · Hong Ge · Franz Pernkopf · Zoubin Ghahramani |
Latent distance estimation for random geometric graphs | Ernesto Araya Valdivia · De Castro Yohann |
The continuous Bernoulli: fixing a pervasive error in variational autoencoders | Gabriel Loaiza-Ganem · John Cunningham |
MCMC [Top]
Topic Models [Top]
Discriminative Topic Modeling with Logistic LDA | Iryna Korshunova · Hanchen Xiong · Mateusz Fedoryszak · Lucas Theis |
Precision-Recall Balanced Topic Modelling | Seppo Virtanen · Mark Girolami |
Scalable inference of topic evolution via models for latent geometric structures | Mikhail Yurochkin · Zhiwei Fan · Aritra Guha · Paraschos Koutris · XuanLong Nguyen |
Variational Inference [Top]
Reinforcement Learning and Planning
Decision and Control [Top]
Exploration [Top]
Hierarchical RL [Top]
DAC: The Double Actor-Critic Architecture for Learning Options | Shangtong Zhang · Shimon Whiteson |
Hierarchical Reinforcement Learning with Advantage-Based Auxiliary Rewards | Siyuan Li · Rui Wang · Minxue Tang · Chongjie Zhang |
Language as an Abstraction for Hierarchical Deep Reinforcement Learning | YiDing Jiang · Shixiang (Shane) Gu · Kevin Murphy · Chelsea Finn |
Learning Robust Options by Conditional Value at Risk Optimization | Takuya Hiraoka · Takahisa Imagawa · Tatsuya Mori · Takashi Onishi · Yoshimasa Tsuruoka |
The Option Keyboard: Combining Skills in Reinforcement Learning | Andre Barreto · Diana Borsa · Shaobo Hou · Gheorghe Comanici · Eser Aygün · Philippe Hamel · Daniel Toyama · Jonathan hunt · Shibl Mourad · David Silver · Doina Precup |
Markov Decision Processes [Top]
Model-Based RL [Top]
Multi-Agent RL [Top]
Navigation [Top]
Addressing Sample Complexity in Visual Tasks Using HER and Hallucinatory GANs | Himanshu Sahni · Toby Buckley · Pieter Abbeel · Ilya Kuzovkin |
Chasing Ghosts: Instruction Following as Bayesian State Tracking | Peter Anderson · Ayush Shrivastava · Devi Parikh · Dhruv Batra · Stefan Lee |
Planning [Top]
Control What You Can: Intrinsically Motivated Task-Planning Agent | Sebastian Blaes · Marin Vlastelica Pogančić · Jiajie Zhu · Georg Martius |
Depth-First Proof-Number Search with Heuristic Edge Cost and Application to Chemical Synthesis Planning | Akihiro Kishimoto · Beat Buesser · Bei Chen · Adi Botea |
Maximum Entropy Monte-Carlo Planning | Chenjun Xiao · Ruitong Huang · Jincheng Mei · Dale Schuurmans · Martin Müller |
Non-Stationary Markov Decision Processes, a Worst-Case Approach using Model-Based Reinforcement Learning | Erwan Lecarpentier · Emmanuel Rachelson |
Planning in entropy-regularized Markov decision processes and games | Jean-Bastien Grill · Omar Darwiche Domingues · Pierre Menard · Remi Munos · Michal Valko |
Planning with Goal-Conditioned Policies | Soroush Nasiriany · Vitchyr Pong · Steven Lin · Sergey Levine |
Regression Planning Networks | Danfei Xu · Roberto Martín-Martín · De-An Huang · Yuke Zhu · Silvio Savarese · Li Fei-Fei |
Search on the Replay Buffer: Bridging Planning and Reinforcement Learning | Ben Eysenbach · Russ Salakhutdinov · Sergey Levine |
Reinforcement Learning [Top]
Convergent Policy Optimization for Safe Reinforcement Learning | Ming Yu · Zhuoran Yang · Mladen Kolar · Zhaoran Wang |
Experience Replay for Continual Learning | David Rolnick · Arun Ahuja · Jonathan Schwarz · Timothy Lillicrap · Gregory Wayne |
Exploration via Hindsight Goal Generation | Zhizhou Ren · Kefan Dong · Yuan Zhou · Qiang Liu · Jian Peng |
Hindsight Credit Assignment | Anna Harutyunyan · Will Dabney · Thomas Mesnard · Mohammad Gheshlaghi Azar · Bilal Piot · Nicolas Heess · Hado van Hasselt · Gregory Wayne · Satinder Singh · Doina Precup · Remi Munos |
Imitation Learning from Observations by Minimizing Inverse Dynamics Disagreement | Chao Yang · Xiaojian Ma · Wenbing Huang · Fuchun Sun · Huaping Liu · Junzhou Huang · Chuang Gan |
Importance Resampling for Off-policy Prediction | Matthew Schlegel · Wesley Chung · Daniel Graves · Jian Qian · Martha White |
Learning Compositional Neural Programs with Recursive Tree Search and Planning | Thomas PIERROT · Guillaume Ligner · Scott Reed · Olivier Sigaud · Nicolas Perrin · Alexandre Laterre · David Kas · Karim Beguir · Nando de Freitas |
Multi-View Reinforcement Learning | Minne Li · Lisheng Wu · Jun WANG · Haitham Bou Ammar |
Real-Time Reinforcement Learning | Simon Ramstedt · Chris Pal |
Reconciling λ-Returns with Experience Replay | Brett Daley · Christopher Amato |
Regret Minimization for Reinforcement Learning by Evaluating the Optimal Bias Function | Zihan Zhang · Xiangyang Ji |
Sample-Efficient Deep Reinforcement Learning via Episodic Backward Update | Su Young Lee · Choi Sungik · Sae-Young Chung |
Staying up to Date with Online Content Changes Using Reinforcement Learning for Scheduling | Andrey Kolobov · Yuval Peres · Cheng Lu · Eric Horvitz |
Trust Region-Guided Proximal Policy Optimization | Yuhui Wang · Hao He · Xiaoyang Tan · Yaozhong Gan |
Using a Logarithmic Mapping to Enable Lower Discount Factors in Reinforcement Learning | Harm Van Seijen · Mehdi Fatemi · Arash Tavakoli |
A Geometric Perspective on Optimal Representations for Reinforcement Learning | Marc Bellemare · Will Dabney · Robert Dadashi · Adrien Ali Taiga · Pablo Samuel Castro · Nicolas Le Roux · Dale Schuurmans · Tor Lattimore · Clare Lyle |
A Regularized Approach to Sparse Optimal Policy in Reinforcement Learning | Wenhao Yang · Xiang Li · Zhihua Zhang |
Constrained Reinforcement Learning Has Zero Duality Gap | Santiago Paternain · Luiz Chamon · Miguel Calvo-Fullana · Alejandro Ribeiro |
Distributional Reward Decomposition for Reinforcement Learning | Zichuan Lin · Li Zhao · Derek Yang · Tao Qin · Tie-Yan Liu · Guangwen Yang |
Divergence-Augmented Policy Optimization | Qing Wang · Yingru Li · Jiechao Xiong · Tong Zhang |
DualDICE: Behavior-Agnostic Estimation of Discounted Stationary Distribution Corrections | Ofir Nachum · Yinlam Chow · Bo Dai · Lihong Li |
Fast Efficient Hyperparameter Tuning for Policy Gradient Methods | Supratik Paul · Vitaly Kurin · Shimon Whiteson |
Finite-Time Performance Bounds and Adaptive Learning Rate Selection for Two Time-Scale Reinforcement Learning | Harsh Gupta · R. Srikant · Lei Ying |
Fully Parameterized Quantile Function for Distributional Reinforcement Learning | Derek Yang · Li Zhao · Zichuan Lin · Tao Qin · Jiang Bian · Tie-Yan Liu |
Intrinsically Efficient, Stable, and Bounded Off-Policy Evaluation for Reinforcement Learning | Nathan Kallus · Masatoshi Uehara |
Learning Reward Machines for Partially Observable Reinforcement Learning | Rodrigo Toro Icarte · Ethan Waldie · Toryn Klassen · Rick Valenzano · Margarita Castro · Sheila McIlraith |
Off-Policy Evaluation via Off-Policy Classification | Alexander Irpan · Kanishka Rao · Konstantinos Bousmalis · Chris Harris · Julian Ibarz · Sergey Levine |
SMILe: Scalable Meta Inverse Reinforcement Learning through Context-Conditional Policies | Seyed Kamyar Seyed Ghasemipour · Shixiang (Shane) Gu · Richard Zemel |
Variance Reduced Policy Evaluation with Smooth Function Approximation | Hoi-To Wai · Mingyi Hong · Zhuoran Yang · Zhaoran Wang · Kexin Tang |
VIREL: A Variational Inference Framework for Reinforcement Learning | Matthew Fellows · Anuj Mahajan · Tim G. J. Rudner · Shimon Whiteson |
Budgeted Reinforcement Learning in Continuous State Space | Nicolas Carrara · Edouard Leurent · Romain Laroche · Tanguy Urvoy · Odalric-Ambrym Maillard · Olivier Pietquin |
Characterizing the Exact Behaviors of Temporal Difference Learning Algorithms Using Markov Jump Linear System Theory | Bin Hu · Usman Syed |
From Complexity to Simplicity: Adaptive ES-Active Subspaces for Blackbox Optimization | Krzysztof M Choromanski · Aldo Pacchiano · Jack Parker-Holder · Yunhao Tang · Vikas Sindhwani |
Keeping Your Distance: Solving Sparse Reward Tasks Using Self-Balancing Shaped Rewards | Alexander Trott · Stephan Zheng · Caiming Xiong · Richard Socher |
Learning from Trajectories via Subgoal Discovery | Sujoy Paul · Jeroen Vanbaar · Amit Roy-Chowdhury |
Loaded DiCE: Trading off Bias and Variance in Any-Order Score Function Gradient Estimators for Reinforcement Learning | Gregory Farquhar · Shimon Whiteson · Jakob Foerster |
Towards Optimal Off-Policy Evaluation for Reinforcement Learning with Marginalized Importance Sampling | Tengyang Xie · Yifei Ma · Yu-Xiang Wang |
Meta-Inverse Reinforcement Learning with Probabilistic Context Variables | Lantao Yu · Tianhe Yu · Chelsea Finn · Stefano Ermon |
Neural Trust Region/Proximal Policy Optimization Attains Globally Optimal Policy | Boyi Liu · Qi Cai · Zhuoran Yang · Zhaoran Wang |
Neural Temporal-Difference Learning Converges to Global Optima | Qi Cai · Zhuoran Yang · Jason Lee · Zhaoran Wang |
Provably Global Convergence of Actor-Critic: A Case for Linear Quadratic Regulator with Ergodic Cost | Zhuoran Yang · Yongxin Chen · Mingyi Hong · Zhaoran Wang |
Regularized Anderson Acceleration for Off-Policy Deep Reinforcement Learning | Wenjie Shi · Shiji Song · Hui Wu · Ya-Chu Hsu · Cheng Wu · Gao Huang |
Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction | Aviral Kumar · Justin Fu · George Tucker · Sergey Levine |
Surrogate Objectives for Batch Policy Optimization in One-step Decision Making | Minmin Chen · Ramki Gummadi · Chris Harris · Dale Schuurmans |
Discovery of Useful Questions as Auxiliary Tasks | Vivek Veeriah · Matteo Hessel · Zhongwen Xu · Janarthanan Rajendran · Richard L Lewis · Junhyuk Oh · Hado van Hasselt · David Silver · Satinder Singh |
A Composable Specification Language for Reinforcement Learning Tasks | Kishor Jothimurugan · Rajeev Alur · Osbert Bastani |
A Generalized Algorithm for Multi-Objective Reinforcement Learning and Policy Adaptation | Runzhe Yang · Xingyuan Sun · Karthik Narasimhan |
A Kernel Loss for Solving the Bellman Equation | Yihao Feng · Lihong Li · Qiang Liu |
Adaptive Temporal-Difference Learning for Policy Evaluation with Per-State Uncertainty Estimates | Carlos Riquelme · Hugo Penedones · Damien Vincent · Hartmut Maennel · Sylvain Gelly · Timothy A Mann · Andre Barreto · Gergely Neu |
Curriculum-guided Hindsight Experience Replay | Meng Fang · Tianyi Zhou · Yali Du · Lei Han · Zhengyou Zhang |
Distributional Policy Optimization: An Alternative Approach for Continuous Control | Chen Tessler · Guy Tennenholtz · Shie Mannor |
Mo' States Mo' Problems: Emergency Stop Mechanisms from Observation | Samuel Ainsworth · Matt Barnes · Siddhartha Srinivasa |
Generalization in Reinforcement Learning with Selective Noise Injection and Information Bottleneck | Maximilian Igl · Kamil Ciosek · Yingzhen Li · Sebastian Tschiatschek · Cheng Zhang · Sam Devlin · Katja Hofmann |
Goal-conditioned Imitation Learning | Yiming Ding · Carlos Florensa · Pieter Abbeel · Mariano Phielipp |
Gossip-based Actor-Learner Architectures for Deep Reinforcement Learning | Mahmoud ("Mido") Assran · Joshua Romoff · Nicolas Ballas · Joelle Pineau · Mike Rabbat |
Imitation-Projected Programmatic Reinforcement Learning | Abhinav Verma · Hoang Le · Yisong Yue · Swarat Chaudhuri |
Reinforcement Learning with Convex Constraints | Sobhan Miryoosefi · Kianté Brantley · Hal Daume III · Miro Dudik · Robert Schapire |
RUDDER: Return Decomposition for Delayed Rewards | Jose A. Arjona-Medina · Michael Gillhofer · Michael Widrich · Thomas Unterthiner · Johannes Brandstetter · Sepp Hochreiter |
Shaping Belief States with Generative Environment Models for RL | Karol Gregor · Danilo Jimenez Rezende · Frederic Besse · Yan Wu · Hamza Merzic · Aaron van den Oord |
Towards Interpretable Reinforcement Learning Using Attention Augmented Agents | Alexander Mott · Daniel Zoran · Mike Chrzanowski · Daan Wierstra · Danilo Jimenez Rezende |
Theory
Computational Complexity [Top]
(Nearly) Efficient Algorithms for the Graph Matching Problem on Correlated Random Graphs | Boaz Barak · Chi-Ning Chou · Zhixian Lei · Tselil Schramm · Yueqi Sheng |
The Parameterized Complexity of Cascading Portfolio Scheduling | Eduard Eiben · Robert Ganian · Iyad Kanj · Stefan Szeider |
Control Theory [Top]
Certainty Equivalence is Efficient for Linear Quadratic Control | Horia Mania · Stephen Tu · Benjamin Recht |
Frequentist Statistics [Top]
ADDIS: an adaptive discarding algorithm for online FDR control with conservative nulls | Jinjin Tian · Aaditya Ramdas |
Conformal Prediction Under Covariate Shift | Ryan Tibshirani · Rina Foygel Barber · Emmanuel Candes · Aaditya Ramdas |
Power analysis of knockoff filters for correlated designs | Jingbo Liu · Philippe Rigollet |
Concentration of risk measures: A Wasserstein distance approach | Sanjay P. Bhat · Prashanth L.A. |
Statistical bounds for entropic optimal transport: sample complexity and the central limit theorem | Gonzalo Mena · Jonathan Niles-Weed |
Game Theory and Computational Economics [Top]
Hardness of Learning and Approximations [Top]
Approximation Ratios of Graph Neural Networks for Combinatorial Problems | Ryoma Sato · Makoto Yamada · Hisashi Kashima |
Deep ReLU Networks Have Surprisingly Few Activation Patterns | Boris Hanin · David Rolnick |
Efficient Approximation of Deep ReLU Networks for Functions on Low Dimensional Manifolds | Minshuo Chen · Haoming Jiang · Wenjing Liao · Tuo Zhao |
Efficient Deep Approximation of GMMs | Shirin Jalali · Carl Nuzman · Iraj Saniee |
Universal Invariant and Equivariant Graph Neural Networks | Nicolas Keriven · Gabriel Peyré |
Information Theory [Top]
Efficient Near-Optimal Testing of Community Changes in Balanced Stochastic Block Models | Aditya Gangrade · Praveen Venkatesh · Bobak Nazer · Venkatesh Saligrama |
Estimating Entropy of Distributions in Constant Space | Jayadev Acharya · Sourbh Bhadane · Piotr Indyk · Ziteng Sun |
Gradient Information for Representation and Modeling | Jie Ding · Robert Calderbank · Vahid Tarokh |
On The Classification-Distortion-Perception Tradeoff | Dong Liu · Haochen Zhang · Zhiwei Xiong |
Statistical-Computational Tradeoff in Single Index Models | Lingxiao Wang · Zhuoran Yang · Zhaoran Wang |
Structure Learning with Side Information: Sample Complexity | Saurabh Sihag · Ali Tajer |
The spiked matrix model with generative priors | Benjamin Aubin · Bruno Loureiro · Antoine Maillard · Florent Krzakala · Lenka Zdeborová |
Turbo Autoencoder: Deep learning based channel codes for point-to-point communication channels | Yihan Jiang · Hyeji Kim · Himanshu Asnani · Sreeram Kannan · Sewoong Oh · Pramod Viswanath |
Large Deviations and Asymptotic Analysis [Top]
McDiarmid-Type Inequalities for Graph-Dependent Variables and Stability Bounds | Rui Zhang · Xingwu Liu · Yuyi Wang · Liwei Wang |
Nonzero-sum Adversarial Hypothesis Testing Games | Sarath Yasodharan · Patrick Loiseau |
Asymptotic Guarantees for Learning Generative Models with the Sliced-Wasserstein Distance | Kimia Nadjahi · Alain Durmus · Umut Simsekli · Roland Badeau |
Random Quadratic Forms with Dependence: Applications to Restricted Isometry and Beyond | Arindam Banerjee · Qilong Gu · Vidyashankar Sivakumar · Steven Wu |
Learning Theory [Top]
Regularization [Top]
Spaces of Functions and Kernels [Top]
Gradient Dynamics of Shallow Univariate ReLU Networks | Francis Williams · Matthew Trager · Daniele Panozzo · Claudio Silva · Denis Zorin · Joan Bruna |
Kernel quadrature with DPPs | Ayoub Belhadji · Rémi Bardenet · Pierre Chainais |
Kernel Truncated Randomized Ridge Regression: Optimal Rates and Low Noise Acceleration | Kwang-Sung Jun · Ashok Cutkosky · Francesco Orabona |
Nonparametric Density Estimation & Convergence Rates for GANs under Besov IPM Losses | Ananya Uppal · Shashank Singh · Barnabas Poczos |
On the Expressive Power of Deep Polynomial Neural Networks | Joe Kileel · Matthew Trager · Joan Bruna |
On the Inductive Bias of Neural Tangent Kernels | Alberto Bietti · Julien Mairal |
Statistical Physics of Learning [Top]
A Solvable High-Dimensional Model of GAN | Chuang Wang · Hong Hu · Yue Lu |
Data-Dependence of Plateau Phenomenon in Learning with Neural Network --- Statistical Mechanical Analysis | Yuki Yoshida · Masato Okada |
Dynamics of stochastic gradient descent for two-layer neural networks in the teacher-student setup | Sebastian Goldt · Madhu Advani · Andrew Saxe · Florent Krzakala · Lenka Zdeborová |
First Exit Time Analysis of Stochastic Gradient Descent Under Heavy-Tailed Gradient Noise | Thanh Huy Nguyen · Umut Simsekli · Mert Gurbuzbalaban · Gaël RICHARD |
The Normalization Method for Alleviating Pathological Sharpness in Wide Neural Networks | Ryo Karakida · Shotaro Akaho · Shun-ichi Amari |
Untangling in Invariant Speech Recognition | Cory Stephenson · Jenelle Feather · Suchismita Padhy · Oguz Elibol · Hanlin Tang · Josh McDermott · SueYeon Chung |
Wide Feedforward or Recurrent Neural Networks of Any Architecture are Gaussian Processes | Greg Yang |