| Approximate Inference Turns Deep Networks into Gaussian Processes | Mohammad Emtiyaz Khan · Alexander Immer · Ehsan Abedi · Maciej Korzepa | 
| Copula-like Variational Inference | Marcel Hirt · Petros Dellaportas · Alain Durmus | 
| Divide and Couple: Using Monte Carlo Variational Objectives for Posterior Approximation | Justin Domke · Daniel Sheldon | 
| Importance Weighted Hierarchical Variational Inference | Artem Sobolev · Dmitry Vetrov | 
| Practical Deep Learning with Bayesian Principles | Kazuki Osawa · Siddharth Swaroop · Mohammad Emtiyaz Khan · Anirudh Jain · Runa Eschenhagen · Richard E Turner · Rio Yokota | 
| Scalable Structure Learning of Continuous-Time Bayesian Networks from Incomplete Data | Dominik Linzner · Michael Schmidt · Heinz Koeppl | 
| Universal Boosting Variational Inference | Trevor Campbell · Xinglong Li | 
| Variational Bayes under Model Misspecification | Yixin Wang · David Blei | 
| Variational Bayesian Decision-making for Continuous Utilities | Tomasz Kuśmierczyk · Joseph Sakaya · Arto Klami | 
| Variational Bayesian Optimal Experimental Design | Adam Foster · Martin Jankowiak · Elias Bingham · Paul Horsfall · Yee Whye Teh · Thomas Rainforth · Noah Goodman | 
| A New Distribution on the Simplex with Auto-Encoding Applications | Andrew Stirn · Tony Jebara · David Knowles | 
| Bayesian Layers: A Module for Neural Network Uncertainty | Dustin Tran · Mike Dusenberry · Mark van der Wilk · Danijar Hafner | 
| Streaming Bayesian Inference for Crowdsourced Classification | Edoardo Manino · Long Tran-Thanh · Nicholas Jennings | 
| Learning Hawkes Processes from a handful of events | Farnood Salehi · William Trouleau · Matthias Grossglauser · Patrick Thiran | 
| Projected Stein Variational Newton: A Fast and Scalable Bayesian Inference Method in High Dimensions | Peng Chen · Keyi Wu · Joshua Chen · Tom O'Leary-Roseberry · Omar Ghattas | 
| Provable Gradient Variance Guarantees for Black-Box Variational Inference | Justin Domke | 
| Semi-Implicit Graph Variational Auto-Encoders | Arman Hasanzadeh · Ehsan Hajiramezanali · Krishna Narayanan · Nick Duffield · Mingyuan Zhou · Xiaoning Qian | 
| Sparse Variational Inference: Bayesian Coresets from Scratch | Trevor Campbell · Boyan Beronov | 
| Stein Variational Gradient Descent With Matrix-Valued Kernels | Dilin Wang · Ziyang Tang · Chandrajit Bajaj · Qiang Liu | 
| Tensor Monte Carlo: Particle Methods for the GPU era | Laurence Aitchison | 
| The Thermodynamic Variational Objective | Vaden Masrani · Tuan Anh Le · Frank Wood |